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Abstract

Automated planning is a hard problem even in its most
basic form as STRIPS planning. We are interested in
numeric planning tasks with instantaneous actions, a
problem which is not even decidable in general. Relax-
ation is an approach to simplifying complex problems
in order to obtain guidance in the original problem. We
present a relaxation approach with intervals for numeric
planning and discuss the arising complexity issues.

Introduction
Relaxation is a predominant approach to simplifying plan-
ning problems. Solutions of the relaxed planning problem
can be used to guide search in the original planning task.
The forward propagation heuristic hadd (Bonet, Loerincs,
and Geffner 1997; Bonet and Geffner 2001) was used in the
heuristic search planner that won the first International Plan-
ning Competition (IPC 1998) and hmax (Bonet and Geffner
1999) is its admissible counterpart. The underlying assump-
tion of a delete relaxation is that propositions which are
achieved once during planning can not be invalidated. More
recent planning systems are usually not restricted to propo-
sitional state variables of the planning problem. Instead they
use the SAS+ formalism (Bäckström and Nebel 1993) which
allows for (finite-domain) multi-valued variables. Unlike
propositional STRIPS (Fikes and Nilsson 1971), a “delete
relaxation” corresponds to variables that can attain a set of
values at the same time. Extending this concept for nu-
meric planning relaxes the set representation even further.
Numeric variables can have infinitely many values which
makes it impossible to store all of them. A memory efficient
approach is to consider the enclosing interval of all possi-
ble values for each numeric variable. The methods to deal
with intervals have been subject to the field of interval arith-
metic (Young 1931) which has been used in mathematics for
decades (Moore, Kearfott, and Cloud 2009) and enables us
to deal with intervals in terms of basic numeric operations.

Numeric planning tasks can require actions to be applied
multiple times, as setting a numeric variable to a target value
can require multiple steps even in relaxed problems. In this
paper we provide the foundations for interval relaxed nu-
meric planning.

Related Work
Extending the concept of classical planning heuristics to nu-
meric problems has been done before, albeit only for a sub-
set of numeric tasks. In many relevant real world problems,
numeric variables can only be manipulated in a restricted
way. The Metric-FF planning system (Hoffmann 2003) tries
to convert the planning task into a linear numeric task which
ensures that variables can “grow” in only one direction. By
introducing inverted auxiliary variables for decreasing nu-
meric variables, the concept of a delete relaxation trans-
lates into a relaxation where decrease effects are considered
harmful and higher values of a variable are always beneficial
to fulfill the preconditions of actions.

More recently, Coles et al. (2008) investigated an ap-
proach based on linear programs. In many relevant real
world applications, numeric variables are used to model re-
sources. Delete relaxation heuristics fail to offer guidance
on such problems if a cyclic resource transfer is possible.
As delete relaxations make the assumption that sub-goals
stay achieved, a resource transfer can “produce” resources
without decreasing them at their original destination. Coles
et al. analyze the planning problem for consumers and pro-
ducers of resources and build a linear program to ensure that
resources are not more often consumed than produced or ini-
tially available to obtain an informative heuristic.

Basics
In this section we outline numeric planning with instanta-
neous actions which is expressible in PDDL2.1, layer 2
(Fox and Long 2003). We present an overview over interval
arithmetic, the technique we use to extend delete relaxation
heuristics to numeric planning. The section closes with a
short complexity discussion.

Numeric Planning with Instantaneous Actions
Given a set of variables V with domains dom(v) for all
v ∈ V , a state s is a mapping of variables v to their respec-
tive domains. Throughout the paper, we denote the value of
a variable v in a state s by s(v).

A numeric planning task Π = 〈VP ,VN ,O, I,G〉 is a
5-tuple where VP is a set of propositional variables vp
with domain {true, false}. VN is a set of numeric vari-
ables vn with domain Q∞ where we abbreviate Q∞ for



Q ∪ {−∞,∞} throughout the paper. O is a set of opera-
tors, I the initial state and G is the goal condition. A nu-
meric expression e1 ◦ e2 is an arithmetic expression with
operators ◦ ∈ {+,−,×,÷} and expressions e1 and e2 re-
cursively defined over variables VN and constants from Q.
A numeric constraint con = (e1 ./ e2) compares numeric
expressions e1 and e2 with ./ ∈ {≤, <,=, 6=}. A condition
is a conjunction of propositions and numeric constraints.
A numeric effect is a triple (vn ◦= e) where vn ∈ VN ,
◦= ∈ {:=,+=,−=,×=,÷=} and e is a numeric expres-
sion. Operators o ∈ O are of the form 〈pre → eff〉 and
consist of a condition pre and a set of effects eff which con-
tains at most one numeric effect for each numeric variable
vn and at most one truth assignment for each propositional
variable vp.

The semantic of a numeric planning task is straightfor-
ward. For constants c ∈ Q, s(c) = c by abuse of notation.
Numeric expressions (e1 ◦ e2) for ◦ ∈ {+,−,×,÷} are re-
cursively evaluated in state s: s(e1 ◦ e2) = s(e1) ◦ s(e2). A
state satisfies a condition s � vp iff s(vp) = true, where
vp ∈ VP . For numeric constraints, s � (e1 ./ e2) iff
s(e1) ./ s(e2) where ./ ∈ {≤, <,=, 6=}, and e1 and e2
are expressions. A state satisfies a conjunctive condition
s � k1 ∧ k2 iff s � k1 and s � k2.

An operator o = 〈pre → eff〉 is applicable in s iff
s � pre. The successor state appo(s) = s′ resulting from
an application of o is defined as follows, where eff =
{eff1, . . . , effn}: if effi is a numeric effect vn ◦= e with
◦= ∈ {+=,−=,×=,÷=}, s′(vn) = s(vn) ◦ s(e). If effi

is a numeric effect vn := e, then s′(vn) = s(e). If effi is a
propositional effect vp := ep with ep ∈ {true, false}, s′(vp)
is the new truth value ep. Finally, if a variable v does not
occur in any effect, then s′(v) = s(v).

A plan π is a sequence of actions that leads from I to a
state satisfying G such that each action is applicable in the
state that follows by executing the plan up to that action.

We intend to relax numeric planning with the help of in-
tervals. The next section establishes the foundations of in-
terval arithmetic.

Interval Arithmetic
Interval arithmetic uses an upper and a lower bound to
enclose the actual value of a number. Closed intervals
[x, x] = {q ∈ Q∞ | x ≤ q ≤ x} contain all rational num-
bers (or ±∞) from x to x. Throughout this paper we refer
to the lower bound of an interval x by x and to the upper
bound by x. The set Ic = {[x, x] | x ≤ x} contains all
closed intervals. Numbers q can be transformed into a de-
generate interval [q, q]. The basic arithmetic operations in
interval arithmetic are given as:

• addition: [x, x] + [y, y] = [x+ y, x+ y],

• subtraction: [x, x]− [y, y] = [x− y, x− y],

• multiplication: [x, x]× [y, y] =[
min(xy, xy, xy, xy),max(xy, xy, xy, xy)

]
,

• division: [x, x]÷ [y, y] =[
min

(
x/y, x/y, x/y, x/y

)
,max

(
x/y, x/y, x/y, x/y

)]

if 0 /∈ [y, y]. Otherwise, at least one of the bounds
diverges to ±∞. We do not explicate all cases of x, x, y
and y being positive, negative or zero which determine
which of the bounds diverge and refer the interested
reader to the literature (Moore, Kearfott, and Cloud
2009).

Analogously we define open bounded intervals (x, x)
= {q ∈ Q∞ | x < q < x} and the set of open inter-
vals Io = {(x, x) | x < x}, as well as half open in-
tervals [x, x) = {q ∈ Q∞ | x ≤ q < x} and (x, x]
= {q ∈ Q∞ | x < q ≤ x} and the respective sets
Ico = {[x, x) | x < x} and Ioc = {(x, x] | x < x}. Fi-
nally the set of mixed bounded intervals is given as
Im = Ic ∪ Io ∪ Ioc ∪ Ico. Open and mixed bounded intervals
follow the same arithmetic rules as closed intervals. When-
ever open and closed bounds contribute to the new interval
bound, the bound is open.
Example 1. The product (−2, 3] × [−4, 2) is the interval
[−12, 8). The lower bound is the result of 3 × −4 and the
resulting bound is closed because both contributing bounds
are closed. The new upper bounds is computed by −2 ×
−4 and the open bound of the left interval determines the
“openness” of the resulting bound.
Definition 1. Let x, y ∈ Im be intervals. The convex
union u = x t y is the interval with u = min(x, y) and
u = max(x, y). Whether the bounds of u are open or closed
depends on whether those of x and y are open or closed.

Definition 1 implicitly adds all values between the inter-
vals to the resulting interval if x ∩ y = ∅.

Complexity
Unlike classical planning, which is PSPACE-complete (By-
lander 1994), numeric planning is undecidable (Helmert
2002). Even though completeness of numeric planning can
therefore not be achieved in general, numeric planners can
find plans or an assurance that the problem is unsolvable
for many practical problems. Moreover, we will prove in
the following section that the relaxed numeric plan existence
problem is decidable in polynomial time for acyclic depen-
dency tasks, tasks in which the expressions of numeric ef-
fects do not depend on the variable they alter.

Delete Relaxation
In this section we discuss natural extensions of delete relax-
ation to planning with numeric variables.

Motivation
As planning is hard, it is beneficial to consider a simplified
problem in order to obtain guidance in the original problem.
The delete relaxation of classical planning ignores delete
effects, effects that set the truth value of a proposition to
false. As action preconditions and the goal condition require
propositions to evaluate to true, delete effects complicate
plan search. Finding a relaxed plan on the other hand is pos-
sible in polynomial time because relaxed actions do not have
delete effects and therefore each action has to be applied at
most once. Plans for the original problem are also plans for



the corresponding delete relaxed planning task. While find-
ing any relaxed plan is possible in polynomial time, finding
a shortest relaxed plan is NP-hard (Bylander 1994).

Numeric Relaxation Approaches
The idea behind delete relaxation is that facts that are
reached once stay achieved. We will now discuss several
ways to extend this concept to numeric planning. Combina-
tions of these approaches are subject of future research.

Enumeration. The number of values that a variable can
attain after applying a fixed number of actions is finite. An
idea is to store the set of all attained values for each vari-
able. However, the number of attainable values grows ex-
ponentially with the number of applied operators. As such
it becomes infeasible to maintain the set of possible values
quickly.

Example 2. Consider a numeric planning task with ini-
tial state I(x) = 0 and operators o1 = 〈∅ → {x += 1}〉
and o2 = 〈∅ → {x ÷= 2}〉. Denoting by xk, k = 0, . . . , 3
the set of possible values of x after k steps, we
have: x0 = {0}, x1 = {0, 1}, x2 = {0, 12 , 1, 2} and
x3 = {0, 14 ,

1
2 , 1, 1

1
2 , 2, 3}.

For problems with bounded plan length, the enumeration
approach requires space exponential in the bound. Even
worse, the enumeration relaxation remains undecidable in
general.

Theorem 1. The numeric plan existence problem in an enu-
meration relaxation is undecidable.

Proof sketch. We can basically adopt the proof for nu-
meric planning by Helmert (2002). Formalizing Diophan-
tine equations as planning problem results in a task that is
not decidable as solutions have to be integers and the relax-
ation does not relax this property.

Discretization. In order to restrict the number of possi-
ble values from the enumeration approach, multiple values
can be aggregated into “buckets”, where a representative ap-
proximates all values within. These representatives can be
treated as multi-valued finite domain variables from classi-
cal SAS+-planning. The state transition has to be defined
in such a way that completeness is preserved – plans for the
real problem have to act as plans in the relaxed problem.
Proper abstractions offer potential for future research.

Higher values are better. Another approach is only feasi-
ble on a restricted set of planning tasks. If all preconditions
and goals have the form (x > c) or (x ≥ c) where x is a nu-
meric variable and c a numeric constant, higher values are
always beneficial for a variable. Numeric effects are only
allowed to alter numeric variables by a positive constant,
and therefore, decrease effects are considered harmful. The
Metric-FF planning system uses this type of relaxation and
Hoffmann (2003) shows that a large class of problems can
be compiled into the required linear normal form.

Interval relaxation. An interval which encloses all val-
ues that a numeric variable can attain is a memory efficient
method. Algebraic base operations are allowed in PDDL and

supported by interval arithmetic. Therefore, we will focus
on interval relaxation in the following section.

Interval Relaxation

In this section we elaborate on interval relaxation for nu-
meric planning tasks. We will discuss the complexity of
the plan existence problem for the presented semantics. We
identify a class of tasks with acyclic dependencies between
variables for which we can generate interval relaxed plans in
polynomial time.

The interval relaxation of a numeric planning task differs
only marginally from the original task description on a syn-
tactic level. Propositional variables can now be both true and
false at the same time and numeric variables are mapped to
closed intervals.

Definition 2. Let Π be a numeric planning task. The inter-
val delete relaxation Π+ = 〈V+

P ,V
+
N ,O+, I+,G+〉 of Π is

a 5-tuple where V+
P are the propositional variables from Π

with the domains replaced by dom(vp) = {true, false, both}
and V+

N are the numeric variables with the domains replaced
by closed intervals dom(vn) = Ic for all vn ∈ V+

N . The
initial state I+ is derived from I by replacing numbers
I(vn) with degenerate intervals I+(vn) = [I(vn), I(vn)]
and I+(vp) = I(vp). G+ is the goal condition.

The semantic of Π+ draws on interval arithmetic. Nu-
meric expressions are defined recursively: let e1 and e2
be numeric expressions. The interpretation of a constant
expression is s+(c) = [c, c] and compound expressions
are interpreted as s+(e1 ◦ e2) = s+(e1) ◦ s+(e2) for
◦ ∈ {+,−,×,÷} where “◦” now operates on intervals.
For (goal and operator) conditions, the relaxed semantic
is defined as follows: let vp ∈ V+

P be a propositional
variable, then s+ � vp iff s+(vp) ∈ {true, both}. For
numeric constraints let e1 and e2 be numeric expres-
sions, and ./ ∈ {<,≤,=, 6=} a comparison operator. Then
s+ � (e1 ./ e2) iff ∃q1 ∈ s+(e1),∃q2 ∈ s+(e2) with q1 ./ q2.
This implies that two intervals can be “greater” and “less”
than each other at the same time.

The semantic of numeric effects vn ◦= e is relaxed
twice: vn keeps its old value and gains all values up
to the new value which is an interval in the relaxation.
The state app+

o (s+) = s′
+ resulting from an appli-

cation of o with effect eff ∈ {eff1, . . . , effn} is then
s′

+
(vn) = s+(vn) t (s+(vn) ◦ s+(e)) if eff is a numeric ef-

fect. As we use the convex union from Definition 1, s′+(vn)
contains all values between the old value of vn and the eval-
uated expression (s+(vn) ◦ s+(e)). For propositional ef-
fects, s′+(vp) = both if the effect changes the truth value
effi(vp) 6= s+(vp) of vp, and s′+(vp) = s+(vp) otherwise.
Again, s′+(v) = s+(v) if v occurs in no effect.

Example 3. Applying o = 〈∅ → {x ×= e}〉 in a state map-
ping x 7→ [8, 10] and e 7→ [− 1

2 ,
1
2 ] leads to a state s′(x) =

[8, 10] t ([8, 10]× [− 1
2 ,

1
2 ]) = [8, 10] t [−5, 5] = [−5, 10].



Interval Relaxation Complexity
For the classical relaxed planning problem, a relaxed plan
can be found by applying all applicable operators in paral-
lel until a fix-point is reached. As no effect can destroy a
condition in the relaxed task, the number of operators in the
planning task restricts the required number of iterations un-
til a fix-point is reached. The task is solvable if the goal
condition holds in the resulting state. A serialized plan can
be obtained by ordering actions from the same parallel layer
arbitrarily.

We employ a similar method for interval relaxed numeric
planning. We have to approach the challenge that numeric
operators can have to be applied arbitrarily often. An idea
is to transform the planning task into a semi-symbolic rep-
resentation which captures repeated application of operators
with numeric effects. We define interval relaxed and repe-
tition relaxed planning tasks which we refer to as repetition
relaxed for short. In repetition relaxed planning tasks we
simulate the behavior of applying numeric effects arbitrar-
ily often independently. As we will see later, the indepen-
dence assumption is not justified for numeric effects vn ◦= e
where the expression of the assignment e depends on the af-
fected variable vn. We show that an adaptation of the al-
gorithm from classical relaxed planning can be used to find
plans for repetition relaxed planning tasks with acyclic de-
pendencies, where the variables in e do not depend on vn.

Repetition relaxed planning tasks use mixed bounded in-
tervals, intervals whose bounds can either be open or closed,
to capture the attainable values of a numeric variable. We
are interested in the behavior of numeric effects in the limit.
We use different fonts to distinguish a variable and its value
e.g. s(x) = x in the following, whenever the state s is not
essential. If an operator o has an additive effect x ±= e for
±= ∈ {+=,−=} which can extend a bound of x once, it
can extend that bound to any value by applying o multiple
times. The result of applying an additive effect arbitrarily
often in a state s only depends on whether e can be nega-
tive, zero or positive. The behavior of multiplicative effects
>= ∈ {×=,÷=} is slightly more complex. Multiplica-
tive effects x >= e can contract or expand depending on
whether e contains elements with absolute value greater one
and switch signs if e negative which results in up to seven
different behaviors of e.

Definition 3. Let Π+ be an interval relaxed planning task.
An (interval and) repetition relaxed planning task of Π+ is
a 5-tuple Π# = 〈V +

P ,V
#
N ,O#, I#,G#〉 with propositional

variables V +
P from Π+. The domains of numeric variables

dom(vn) = Im for vn ∈ V#
N are extended to mixed-bounded

intervals. The initial state I#(vp) = I+(vp) assigns the
same truth value from I+ to each propositional variable vp
and each numeric variable vn is initialized to the same closed
degenerate interval I#(vn) = I+(vn).

Again, the relaxation does not change much on a syn-
tactical level. The main difference lies in the semantic
of numeric effects. The semantic of numeric expressions
can be transferred directly from the interval relaxation as
interval arithmetic operations are also defined for mixed

bounded intervals. The interpretation of a numeric ex-
pression is given as s#(e1 ◦ e2) = s#(e1) ◦ s#(e2) for
expressions e1 and e2 and ◦ ∈ {+,−,×,÷}. The semantic
of conditions is again s# � vp iff s#(vp) ∈ {true, both}
for propositions vp ∈ V#

P . For numeric con-
straints e1 ./ e2 where e1 and e2 are expres-
sions and comparison operator ./ ∈ {<,≤,=, 6=},
s# � (e1 ./ e2) iff ∃q1 ∈ s#(e1),∃q2 ∈ s#(e2) with
q1 ./ q2.

The semantic of numeric effects captures the repeated
application of actions. We first define the repeti-
tion relaxed semantic of x ◦= e for intervals x and e
with ◦= ∈ {:=,+=,−=,×=,÷=}. Let x0 = x and
xi+1 = xi t (xi ◦ e) for i ≥ 0 where (x : e) is defined
as e for assign effects. Let succ◦(x, e) =

⋃∞
i=0 xi. We are

interested in the result of applying an operator arbitrarily
often individually for each effect, where the interval e is
fixed even if the expression e depends on x. As xi+1 ⊇ xi
by definition of the convex union and because all xi are
convex, the resulting set succ◦(x, e) is an interval. How-
ever, open bounded intervals can be generated by the limit
value consideration. The state app#

o (s#) = s′
# resulting

from an application of o with effect eff = {eff1, . . . , effn}
is then again s′

#
(v) = s#(v) if v occurs in no effect,

s′
#

(vp) = both if effi(vp) 6= s#(vp) is a propositional effect
which changes the truth value of vp and s′#(vp) = s#(vp)

otherwise. For numeric effects effi = (vn ◦= e), s′#(vn) =
succ◦(s

#(vn), s
#(e)).

Fixing expressions e of numeric effects vn ◦= e to the
interval e they evaluate to in the previous state is beneficial to
compute the successor, as changes in the assignment (which
can be an arbitrary arithmetic expression) do not have to be
considered immediately. The repetition relaxation Π# of a
planning task relaxes Π+ further and plans for Π+ are still
plans for Π#. The reason is that each operator application
can only extend the interval of affected numeric variables
more than before. Evaluating the expression in the successor
state s′#(e) can only extend the interval s#(e).

We want to use the fix-point algorithm which applies all
operators of a planning task in parallel until a fix-point is
reached to find a repetition relaxed plan. The successors
succ◦(x, e) of numeric effects are defined by the limit⋃∞

i=0 xi and we are interested in determining the result of
such an effect in constant time. The result only depends
on which of up to 21 symbolic behavior classes are
covered by x and e. The seven behavior classes for e are
Be = {(−∞,−1), {−1}, (−1, 0), {0}, (0, 1), {1}, (1,∞)},
and for x they are Bx = {(−∞, 0), {0}, (0,∞)}. We
decompose e and x into the hit behavior classes where
e ∩ ẽ 6= ∅ for a behavior class ẽ ∈ Be and x ∩ x̃ 6= ∅ for
a behavior class x̃ ∈ Bx, respectively. Table 1 contains
partial behaviors T◦(x, e) for ◦= ∈ {+=,−=,×=,÷=}
where T◦(x, e) is only defined if x ⊆ x̃ ∈ Bx and
e ⊆ ẽ ∈ Be and T◦(x, e) is the table entry with column
x̃ and row ẽ in the table with the corresponding ◦=
operator. We use “indeterminate” parentheses L · , · M to
denote intervals whose openness is determined by the terms



+= ẽ
(−∞, 0) {0} (0,∞)

x̃ (−∞,∞) (−∞, xM Lx, xM Lx,∞)

−= ẽ
(−∞, 0) {0} (0,∞)

x̃ (−∞,∞) Lx,∞) Lx, xM (−∞, xM
×= ẽ

(−∞,−1) {−1} (−1, 0) {0} (0, 1) {1} (1,∞)

x̃
(−∞, 0) (−∞,∞) Lx,−xM Lx, x×eM Lx, 0] Lx, 0) Lx, xM (−∞, xM
{0} [0, 0]

(0,∞) (−∞,∞) L−x, xM Lx×e, xM [0, xM (0, xM Lx, xM Lx,∞)

÷= ẽ
(−∞,−1) {−1} (−1, 0) {0} (0, 1) {1} (1,∞)

x̃
(−∞, 0) Lx, x÷eM Lx,−xM (−∞,∞) undefined (−∞, xM Lx, xM Lx, 0)
{0} [0, 0] undefined [0, 0]

(0,∞) Lx÷e, xM L−x, xM (−∞,∞) undefined Lx,∞) Lx, xM (0, xM

Table 1: Partial behaviors for numeric effects

contributing to it. For assignment effects := we do not
need a table as the behavior is equal for all classes, and
T:(x, e) = Lmin(x, e),max(x, e)M.

Theorem 2. The partial behaviors T◦(x, e) are equal to
succ◦(x, e) for x ⊆ x̃ ∈ Bx and e ⊆ ẽ ∈ Be.

We prove Theorem 2 exemplarily for two of the less ob-
vious entries in Table 1. The proofs for the remaining cases
can be done similarly.

Proof for multiplication, x ⊆ x̃ = (0,∞) and e ⊆ ẽ = (0, 1):
We have to show that succ×(x, e) = (0, xM.

“⊆”: In order to prove succ×(x, e) ⊆ (0, xM, we show
that for every element q ∈ succ×(x, e) =

⋃∞
i=0 xi there

exists an index k ∈ N with q ∈ xk = Lxk, xkM and
xk ⊆ (0, xM. We prove this subset relation separately for
each bound of xk.
Lower bound: We show xk > 0 for all k ∈ N
by induction. The base case x0 > 0 holds as
x0 = x ⊆ (0,∞). Inductively xi+1 = xi t (xi × e)
= min(xi, xi × e, xi × e, xi × e, xi × e). As x ⊆ (0,∞)
and e ⊆ (0, 1) are both positive, the result is positive as
well. The minimum is obtained for xi × e because e is a
contraction. Thus, for all k it holds that q ≥ xk > 0.
Upper bound: Again, we show xk ≤ x for all k ∈ N
by induction. The base case holds because x0 = x with
interval open/closed as for x. The upper bound does not
change in the inductive step and we have xi+1 = xi because
xi+1 ≥ xi by definition of the convex union and xi+1 ≤ xi
because xi+1 = xi × e which is smaller than xi because
0 < e ≤ e < 1 is a contraction. The upper bound of the
interval remains open/closed as x as well for xi+1. Thus,
for every q it holds that q ≤ xk ≤ x. Together with the
lower bound 0 < q we can conclude that q ∈ (0, xM.

“⊇”: Now we have to show the converse direction
succ×(x, e) ⊇ (0, xM. Let q ∈ (0, xM. We have to show
that q ∈ succ×(x, e). As xk = x for all k ∈ N we only have
to show that there exists a k ∈ N with q ∈ xk = Lxk, xkM be-
cause xi+1 ⊇ xi and therefore q ∈ succ×(x, e) =

⋃∞
i=0 xi.

Such a k exists because to obtain x× ek < q respectively
ek < q ÷ x. Building the logarithm alters the inequality

because e < 0: loge(e
k) > loge(q ÷ x). Therefore,

q ∈ succ×(x, e) for k ≥ dloge(q ÷ x)e.

Proof for division, x ⊆ x̃ = (−∞, 0) and e ⊆ ẽ = (−∞,−1):
We have to show that succ÷(x, e) = Lx, x÷ eM.

“⊆”: We prove succ÷(x, e) ⊆ Lx, x÷ eM again by show-
ing that for every q ∈ succ÷(x, e) =

⋃∞
i=0 xi there exists an

index k ∈ N with q ∈ xk = Lxk, xkM. We show inductively
that xk ⊆ Lx, x÷ eM for all k ∈ N.
Base case: For q ∈ x0 = Lx, xM with bounds open/closed as
in x, it is easy to show that also q ∈ Lx, x÷ eM because from
x ⊆ (−∞, 0) and e ⊆ (−∞,−1) we know that x, x, e and
e are all negative and therefore x÷ e > 0 > x so the upper
bound on the right hand side is always greater than the upper
bound of x0 and we have x = x0 ≤ q ≤ x0 < x÷ e.
Inductive step, lower bound: We have to prove that the
lower bound xi+1 ≥ x, with the induction hypothesis that
xi ≥ x holds. The new bound xi+1 = xi t (xi ÷ e)
= min(xi, xi ÷ e, xi ÷ e, xi ÷ e, xi ÷ e) is attained at xi
because −∞ < e < e < 0 and xi are negative making the
results xi÷ e and xi÷ e positive and obviously greater than
0 and as such also greater than xi. If the upper bound xi is
also negative, the minimum for xi+1 is clearly attained by xi
but even if xi is positive, it is bounded by 0 ≤ xi ≤ (x÷ e).
Because the division by e ⊆ (−∞,−1) is a contraction, the
highest absolute value is attained by dividing by e but still
(x ÷ e) ÷ e ≥ (xi ÷ e) ≥ xi. Therefore, the minimum of
xi+1 = xi. The lower bound remains open/closed for all k
and q ≥ xi+1 = xi = x0 = x.
Inductive step, upper bound: We now have to show that
xi+1 ≤ x ÷ e. The new bound xi+1 is computed
as xi t (xi ÷ e) = max(xi, xi ÷ e, xi ÷ e, xi ÷ e, xi ÷ e).
The maximum is attained at xi ÷ e (and at xi if they are
equal). The reasoning is as follows: all elements of e are
negative and if xi and xi are both negative, xi has the higher
absolute value. If xi is positive, the division by a negative
number will not contribute to a higher upper bound. As
e < e < −1 is a contraction, the highest value is achieved
for x ÷ e with bounds closed if the bounds corresponding
to x and to e are both closed, and open otherwise. With
xi > x by induction hypothesis, we can therefore conclude



that xi+1 ≤ xi ÷ e ≤ x÷ e. Therefore, q ≤ xk ≤ x÷ e.
Together with the lower bound x ≤ xk ≤ q we can conclude
that q ∈ Lx, x÷ eM.

“⊇”: We have to show that succ÷(x, e) ⊇ Lx, x÷ eM. Let
q ∈ Lx, x÷eM. We have to show that it then also follows that
q ∈ succ÷(x, e). As xk = x for all k ∈ N we only have to
show that there exists a k ∈ N with q ∈ xk = Lxk, xkM be-
cause xi+1 ⊆ xi and therefore q ∈ succ÷(x, e) =

⋃∞
i=0 xi.

The maximum is obtained after k = 1 steps because the
maximum to compute xi+1 = xi ÷ e only depends on the
lower bound xi which equals x for all k ≥ 0.

With such a decomposition, numeric effects can now be
computed in constant time. Unfortunately, the union of the
partial behaviors of an effect does not equal the semantic of
a successor.
Hypothesis 1. The successor succ◦(x, e) of an ef-
fect x ◦=e is the union of the successors obtained
by decomposition of the effect into behavior classes,
i.e.

⋃
x̃∈Bx,ẽ∈Be

succ◦(x ∩ x̃, e ∩ ẽ) = succ◦(x, e) where
succ◦(∅, e) = succ◦(x, ∅) = ∅.

Hypothesis 1 does not hold in general, as the following
example illustrates. The successor can grow into behavior
classes which were not covered by the decomposition:
Example 4. Let o = 〈∅ → {x ×= e}〉 have a numeric effect
on x in a state where x = [1, 4] and e = [− 1

2 , 2]. The succes-
sor succ×(x, e) is (−∞,∞). However, the partial behaviors
of the decomposition are succ×(x, [− 1

2 , 0)) = [−2, 4],
succ×(x, [0, 0]) = [0, 4], succ×(x, (0, 1)) = (0, 4],
succ×(x, [1, 1]) = [1, 4] and succ×(x, (1, 2]) = [1,∞).
With the union succ×(x ∩ x̃, e ∩ ẽ) = [−2,∞) which
differs from succ×(x, e) = (−∞,∞).

However, the number of behavior classes is restricted,
and therefore, new behavior classes can only be hit a re-
stricted number of times. The hypothesis can therefore
be fixed by including the partial behaviors T◦(x, e) of the
classes attained by x in a nested fix-point iteration: Let
x0 = x and xj+1 =

⋃
x̃∈Bx,ẽ∈Be

succ◦(xj ∩ x̃, e ∩ ẽ) with
succ◦(∅, e) = succ◦(x, ∅) = ∅ for j ≥ 0. Let s̃ucc◦(x, e) =⋃∞

j=0 xj . Now, the newly attained behavior classes become
part of the decomposition in the next iteration.
Example 5. Recall Example 4 starting with x0 = x = [1, 4]
where the successor succ×(x0 ∩ x̃, e ∩ ẽ) = [−2,∞).
Building the decomposition over the newly achieved behav-
ior classes with x1 = [−2,∞) and e = [− 1

2 , 2] contains
among others succ×([−2, 0), (1, 2]) = (−∞, 0). The union
still contains partial behaviors which set the upper bound to
∞ and therefore succ×(x1 ∩ x̃, e ∩ ẽ) = (−∞,∞). Now, a
fix-point is reached and s̃ucc◦(x, e) = succ◦(x, e).
Lemma 1. The union of decomposed successors
s̃ucc◦(x, e) converges after at most 21 steps.
Proof sketch. The number of behaviors in each class is re-
stricted to |Bx| = 3 and |Be| = 7. Most partial behaviors
T◦(x, e) either set a new bound to a certain value (0 or±∞),
or leave a bound of x unchanged. The only unsafe cases are
multiplications or divisions of a bound with −1 or e. How-
ever, none of these cases is problematic because e is fixed:

T×(x, e) with x ⊆ x̃ = (−∞, 0) and e ⊆ ẽ = (−1, 0)
sets a new upper bound x× e > 0. However, for all classes
T×(x, e) with x ⊆ x̃ = (0,∞), the upper bound is either set
to∞ or it remains the same. Therefore no problematic inter-
actions occur. The same reasoning holds for T×(x, e) with
x ⊆ x̃ = (0,∞) and e ⊆ ẽ = (−1, 0) as well as T÷(x, e)
with e ⊆ ẽ = (−∞,−1).

The feasibility of a decomposition can therefore be refor-
mulated to the following Theorem:
Theorem 3. The successor succ◦(x, e) of an effect x ◦= e
is the fix-point of the convex union of the successors ob-
tained by decomposition of the effect into behavior classes,
i.e. s̃ucc◦(x, e) = succ◦(x, e).
Proof sketch. It should be evident that s̃ucc◦(x, e) ⊆
succ◦(x, e). In the first iteration of s̃ucc◦(x, e) all partial
behaviors succ◦(x ∩ x̃, e ∩ ẽ) are operations on subsets of x
and e. As interval arithmetic is well defined, an arithmetic
operation on a interval x will therefore always subsume the
interval resulting from the same operation of a sub-interval
x′ ⊆ x. During each iteration of s̃ucc◦(x, e), the decom-
position can only grow to behavior classes that were part of
succ◦(x, e) in the first place.

The converse direction s̃ucc◦(x, e) ⊇ succ◦(x, e) is
shown by contradiction. Let q ∈ succ◦(x, e) but not in
s̃ucc◦(x, e). Both successor functions are defined recur-
sively starting with x0 = x. Therefore q /∈ x0, and there has
to be a k > 0 in succ◦(x, e) with kk+1 = xkt(xk◦e) so that
xk ⊂ s̃ucc◦(x, e) but xk+1 6⊂ s̃ucc◦(x, e). After k steps,
the bound of the successors extended beyond the decom-
position s̃ucc◦(x, e) for the first time. Obviously, the new
bound does not originate in xk but the new interval xk+1 is
obtained from (xk ◦ e). The resulting interval depends on
xk, xk, e, e and in case of division also on whether 0 ∈ e.
Each combination of these extreme bounds is contained in
one partial behavior T◦(xk, e). If (xk ◦ e) hits a new behav-
ior class or extends the bounds within a behavior class, this
is a contradiction to s̃ucc◦(x, e) being a fix-point. If (xk ◦e)
stays within a behavior, this is a contradiction to T◦(xk, e)
being well defined (Theorem 2). Thus, such a k cannot be
found, and therefore, it is impossible for q ∈ succ◦(x, e) but
not q ∈ s̃ucc◦(x, e).

With the help of the decomposed successor s̃ucc◦(x, e)
we can compute the result of applying an operator app#

o
with the repetition relaxed semantic in constant time. This
allows us to use the parallel fix-point algorithm from the
classical case analogously: apply all applicable operators in
parallel until a fix-point is reached. If the algorithm termi-
nates, the plan is indeed a plan.
Theorem 4. The parallel fix-point algorithm for repetition
relaxed planning is correct, i.e. if the algorithm outputs an
alleged plan, it is indeed a plan for Π#.

Proof. Operators are only applied if the precondition is ful-
filled.

Unfortunately, the algorithm does not necessarily termi-
nate. In the definition of the semantic of a repetition re-
laxed planning task, we fix the effect e even if it depends
on x. However, this implicit independence assumption is



not justified. Inspecting the entries in Table 1 reveals criti-
cal entries (marked in red) for multiplicative effects which
contract x and flip the arithmetic sign at the same time.
The same is true for assignment effects where T:(x, e) =
Lmin(x, e),max(x, e)M. In these cases, the new value of x
can have a different behavior, if e also depends on x. As e
can change when x changes, the algorithm does not neces-
sarily terminate.
Example 6. Let x = [−1,−1] and o = 〈∅ → {x ×= e}〉
with e = − x+1

2 . The goal is G = {x ≥ 1}.
Applying the operator arbitrarily often according to the

repetition semantic yields the following progression for k
operator applications:

k x e
0 [−1,−1] [0, 0]
1 [−1, 0] [−0.5, 0]
2 [−1, 0.5] [−0.75, 0]
3 [−1, 0.75] [−0.875, 0]
4 [−1, 0.875] [−0.9375, 0]
5 [−1, 0.9375] [−0.96875, 0]

...
...

Obviously, interval x does not only change a restricted num-
ber of times, so the fix-point algorithm for interval relaxed
numeric planning will not terminate.

If we succeeded in directly computing the fix-point to
which the intervals converge with a symbolic interval we
could continue the fix-point algorithm from here. In Exam-
ple 6 we could continue if we would set x = [−1, 1) and
e = (−1, 0]. Unfortunately, the authors did not succeed in
finding a general approach to do so (or to prove that such
a general approach does not exist). Instead, we will now
restrict the problem to planning tasks where the aforemen-
tioned problem does not occur. The problem in Example 6 is
that e depends on x. Thus, we will restrict planning tasks to
contain only effects where the assigned expression is inde-
pendent from the affected variable. We will then show that
such planning tasks are solvable in polynomial time.
Definition 4. A numeric variable v1 is directly dependent on
a numeric variable v2 in task Π if there exists an o ∈ O with
a numeric effect v1 ◦= e so that e contains v2.

Note that a variable can be directly dependent on itself.
Also, the definition of direct dependence does not consider
operator applicability.
Definition 5. A planning task Π is an acyclic dependency
task, if the direct dependency relation is acyclic.
Theorem 5. The parallel fix-point algorithm for repetition
relaxed planning terminates for acyclic dependency tasks.

Proof. As the planning task has acyclic dependencies, the
direct dependency relation induces a topology. Let a phase
of the algorithm be a sequence of parallel operator appli-
cations, where no new operator becomes applicable. Dur-
ing each phase, we consider numeric effects in topological
order concerning the dependency graph. Let V #l

N ⊆ V #
N

be the variables in dependency layer l. We iterate over the
layers k ≥ 0 of the topology assuming that a fix-point is

reached for all variables V #k
N . Variables V #k+1

N only de-
pend on variables V #l

N with 0 ≤ l ≤ k or on constants. A
fix-point is reached for all those variables by induction hy-
pothesis. Inductively, we can assume that the expressions
of numeric effects which alter the variables of layer V #k+1

N
are fixed. Therefore, the successor succ◦(x, e) of an effect
(x ◦= e) with x = s#(x) and e = s#(e) does not change
the variable more than once (or more than 21 times, if we
also consider the intermediate variable updates of the nested
fix-point iteration from Lemma 1).

The number of phases is restricted, too, with the same ar-
gument as for the fix-point algorithm in the classical case.
No precondition can be invalidated once it holds, and during
each phase at least one operator which was not applicable
before must become applicable. The number of phases is
therefore restricted to the number of operators in the plan-
ning task.

Theorem 6. The fix-point algorithm for repetition relaxed
planning is complete for acyclic dependency tasks.

Proof. We prove completeness by contradiction and show
that it is impossible that the algorithm terminates and re-
ports unsolvable although a plan exists. Now assume there
is a plan, but the algorithm terminates and reports unsolv-
able. Therefore, a satisfiable condition must have been un-
satisfied. For propositional conditions, this is impossible,
as s#(vp) � vp if vp ∈ {true, both} and no effect can set
a propositional variable to false. Additionally, all operators
are applied as soon as they are applicable. Thus, without
loss of generality, a satisfiable numeric constraint was not
achieved by the algorithm. This implies that a numeric ef-
fect (vn ◦= e) would have been able to assign a value to a
variable which was not reached by our algorithm. Therefore,
the successor defined by the semantic succ◦(s

#(vn), s
#(e))

has to be different from the successor computed by the al-
gorithm s̃ucc◦(s

#(vn), s
#(e)) which is impossible for nu-

meric tasks with Theorem 3, a contradiction.

Until now we have an algorithm which can compute paral-
lel plans for repetition relaxed planning tasks in polynomial
time for acyclic dependency tasks. As intervals can only
grow by applying an operator, the plan can be serialized by
applying parallel operators from the same layer in an arbi-
trary order. Beneficial effects may make the application of
some operators unnecessary, but it cannot harm conditions.

We are interested in plans for the interval relaxation with-
out the symbolic description of numeric variables. We will
now show that we can derive interval relaxed plans π+ from
repetition relaxed plans π#.

Theorem 7. Plans for the repetition relaxation correspond
to plans for the interval relaxation.

Proof sketch. A serialization of a repetition relaxed plan
π# = 〈o1, o2, . . . , on〉 where 0 < i < n are the operators
applied in the i-th step where the same operator can be ap-
plied in multiple steps. We seek to find a repetition constant
ki for each operator in order to satisfy the constraints from
interval relaxed planning corresponding to those of the rep-
etition relaxed planning plan. However, repetition relaxed



tasks operate on mixed bounded intervals Im whereas inter-
val relaxed tasks are restricted to closed intervals. Thus, we
have to explicate the interval bounds as well. The repetition
relaxed fix-point algorithm is split into phases, were during
each phase the same operators are applicable. Within each
phase, the operators are applied in parallel at most 21 times
for each variable (if all variables have different topology lev-
els in the dependence graph). In order to determine the repe-
tition constants ki, we look at each constraint [a, a] ./ [b, b].
By definition of ./, there exist qa and qb in the respective
intervals so that qa ./ qb. Let qa and qb be such numbers
which satisfy the constraint a ./ b where a and b are in-
tervals which are obtained by evaluating the corresponding
expressions s#(ea) and s#(eb). We investigate each expres-
sion individually. For each expression we have a target value
q. For the constraints above the expressions are ea and eb
and the corresponding target values qa and qb. Unless the
expression is a variable, the target value has to be obtained
recursively from the expressions e1 ◦ e2.

Example 7. Let x = [0, 1), y = [0, 1) and z = (1.7, 3] be
the symbolic values of variables x, y and z with a condition
x+y > z. From ea = x+y 7→ [0, 2) and eb = z we choose an
arbitrary qa = 1.9 ∈ s#(ea) an arbitrary qb = 1.8 ∈ s#(eb)
from within the expression intervals so that the constraint
is satisfied. Now we have to recursively find appropriate
qx and qy in the sub-expressions. A leeway of 2 − 1.9 =
0.1 can be distributed arbitrarily to the target values of the
sub-expressions. We could for example continue with target
values 0.95 for x and y each.

We can choose arbitrary target values for the sub-
expressions within a leeway of feasible choices. Eventu-
ally, all expressions induce target values for the numeric
variables. This can induce multiple different target values
for each variable where only the most extreme target val-
ues have to be considered (an interval including the most
extreme target values will also include intermediate target
values). All target values originate from a repetition relaxed
symbolic state, so they are indeed reachable. In the repeti-
tion relaxed plan, each operator which has a numeric effect
on a variable with a target value achieved the symbolic value
for this variable with a partial behavior from Table 1. For
each operator, the constant k is now computed by solving
x ± k · e = q for additive effects and x > ek = q for mul-
tiplicative effects. The k is therefore the same k from the
proof of Theorem 2. Each operator then has to be applied
n times, where n is the sum over all kp in the phases of the
algorithm, where kp is the maximum number of applications
required for that operator in that phase.

Theorem 8. The problem to generate an interval relaxed
numeric plan is in P for tasks with acyclic dependencies.

Proof. The fix-point algorithm for repetition relaxed plan-
ning tasks is correct (Theorem 4) and complete (Theorem 6)
and it terminates in polynomial time (Theorem 5). There-
fore, generating a repetition relaxed plan π# is possible in
polynomial time. An interval relaxed plan π+ can be con-
structed from π# (Theorem 7) in polynomial time.

The definition of a relaxation is adequate (Hoffmann
2003) if it is admissible, i.e. any plan π for the original task
Π is also a relaxed plan for Π+, if it offers basic informed-
ness, i.e. the empty plan is a plan for Π iff it is a plan for
Π+ and finally the plan existence problem for the relaxation
is in P.
Theorem 9. The interval relaxation is adequate for acyclic
dependency tasks.

Proof. Admissibility. After each step of the plan π, if propo-
sitional variables of the relaxed state differ from the original
state, they assign to both which cannot invalidate any (goal
or operator) conditions. The original value of numeric vari-
ables is contained in the interval of the relaxed state. As
comparison constraints are defined with the relaxed seman-
tic that a constraint holds if it holds for any pair of elements
from the two intervals, admissibility follows directly.

Basic informedness. No (goal or operator) conditions
are dropped from the task. Relaxed numeric variables are
mapped to degenerate intervals which only contain one el-
ement. Therefore, conditions in the original task x ./ y
correspond to interval constraints [x, x] ./ [y, y] which are
satisfied iff they are satisfied in the relaxed task.

Polynomiality. As a corollary to Theorem 8, we can also
conclude that interval relaxed numeric plan existence is in P
for tasks with acyclic dependencies.

The interval relaxation is admissible and offers basic in-
formedness. For acyclic dependency tasks, the plan exis-
tence problem can be decided in polynomial time. Thus, the
interval relaxation is adequate.

The proposed relaxation advances the state of the art even
though the adequacy of interval relaxation was only shown
for a restricted set of tasks. However, the requirement of
acyclic dependency for numeric expressions is a strict gen-
eralization of expressions e being required to be constant,
which is required for other state-of-the-art approaches e.g.
(Hoffmann 2003). On the practical side, many interesting
planning problems are restricted to constant expressions.

Conclusion and Future Work
We presented interval algebra as a means to carry the con-
cept of a delete relaxation from classical to numeric plan-
ning. We proved that this relaxation is adequate for acyclic
dependency tasks, tasks where the expressions of numeric
effects do not depend on the affected variable. The com-
plexity of the approach for arbitrary interval relaxed plan-
ning problems remains an open research issue though. It is
imaginable that a clever approach can find the fix-point of
arbitrary operator application in polynomial time.

In the future, we intend to adapt the most iconic heuristics
from classical planning, hmax, hadd and hFF to the interval
relaxation framework.
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