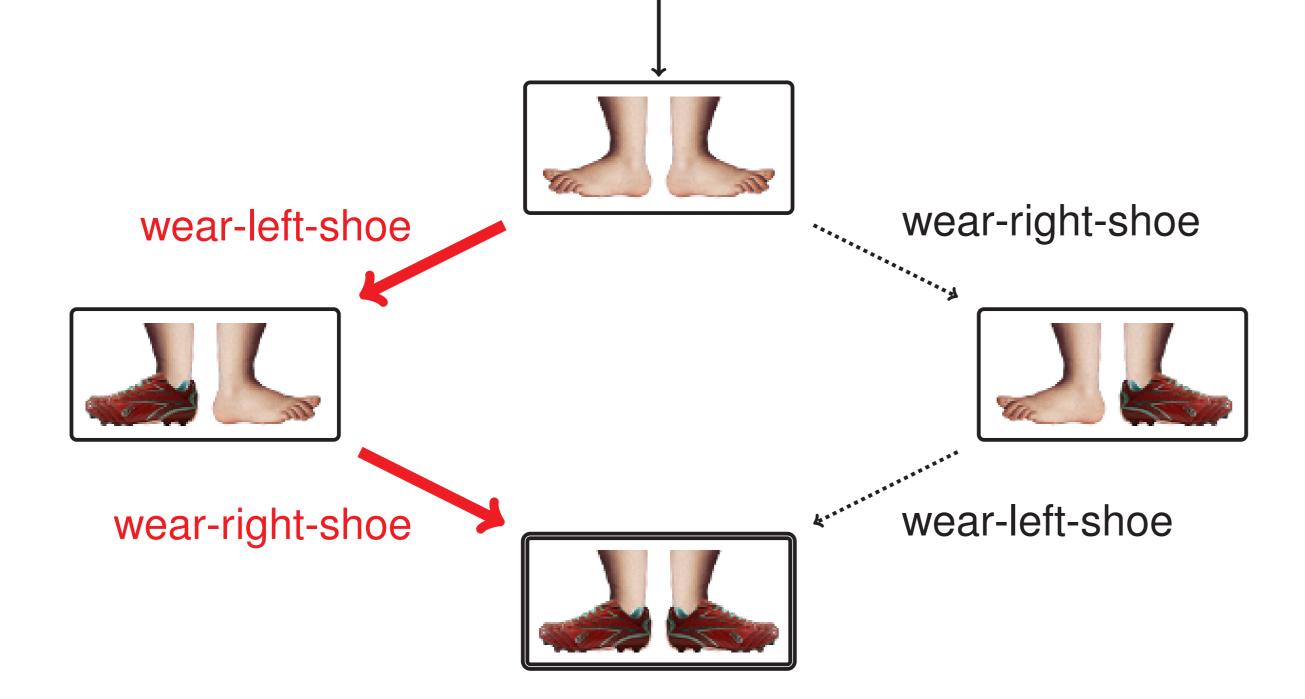


A Stubborn Set Algorithm for Optimal Planning


Yusra Alkhazraji¹ Martin Wehrle² Robert Mattmüller¹ Malte Helmert²

Introduction

Heuristic search

- Popular technique to facilitate planning.
- Drawback: number of state explorations scales exponentially even under generous assumptions [Helmert and Röger 2008].

Strong stubborn set computation (conceptually)

Algorithm 1 Strong stubborn set computation for state *s*

Input: State *s*

- **Output:** Strong stubborn set T_s for s
- 1: $T_s \leftarrow L_s^G$ for some disjunctive action landmark L_s^G for G in s
- 2: repeat
- 3: for all $o \in T_s$ do
- 4: if $o \in app(s)$ then
- 5: $T_s \leftarrow T_s \cup dep(o)$
- 6: **else**

Partial order reduction

- Observation: unnecessary interleavings of transitions
- Idea: Enforce a particular ordering among operators.
- Problem: Original techniques in model checking are sound [Valmari 1989, Godefroid 1996], but adaptations for planning are not [Chen and Yao 2009, Xu et al. 2011, Chen et al. 2009].
- Objective: Adapt original techniques with as little modification as possible.

Preliminaries

SAS⁺ planning tasks

7: $T_s \leftarrow T_s \cup N_s^o$ for some nec. enabling set N_s^o for o in s8: **until** T_s reaches a fixed-point

9: return T_s

Experiments

Node generations and coverage of

- ► Plain A*,
- A* with Expansion Core (EC [Chen and Yao 2009, Xu et al. 2011]), and
- A* with strong stubborn sets (SSS), all guided by the LM-cut heuristic.
- Nodes and coverage +EC,
 +SSS relative to plain A*
- green/red: improvement/deterioration compared to plain A*
- **bold**: best result per domain

	Nodes generated			Coverage		
Domain (problems)	A* +EC +SSS			A* +EC +SSS		
PARCPRINTER-08 (30)	2461106	100%	<1%	18	±0	+12
PARCPRINTER-OPT11 (20)	2460475	100%	<1%	13	± 0	+7
WOODWK-OPT08 (30)	7334811	17%	3%	17	+5	+11
WOODWK-OPT11 (20)	7334070	17%	3%	12	+3	+7
SATELLITE (36)	4283651	64%	5%	7	± 0	+3
LOGISTICS00 (28)	12855134	100%	17%	20	± 0	+1
OPENSTACKS-OPT08 (30)	34336295	100%	52%	18	-2	+2
OPENSTACKS-OPT11 (20)	34209201	100%	52%	13	-2	+2
ELEVATORS-OPT08 (30)	18561161	100%	55%	19	± 0	+3
ELEVATORS-OPT11 (20)	18006303	100%	55%	16	± 0	+2
PSR-SMALL (50)	1859026	100%	80%	49	-1	± 0
MPRIME (35)	921359	100%	84%	22	-1	± 0
ROVERS (40)	1281967	99%	87%	7	± 0	+1
PIPESWORLD-TK (50)	585963	100%	97%	9	-1	± 0
PIPESWORLD-NOTK (50)	2798494	100%	99%	17	-1	± 0
FREECELL (80)	5543463	100%	100%	15	-4	-3
GRIPPER (20)	10807891	100%	100%	7	-1	± 0
PARKING-OPT11 (20)	39354	100%	100%	2	-1	-1
SCANALYZER-08 (30)	7781870	100%	100%	14	± 0	-1
SCANALYZER-OPT11 (20)	7781742	100%	100%	11	± 0	-1
TRUCKS (30)	11687203	100%	100%	10	-1	-1
REMAINING DOMAINS (707)	136716998	100%	94%	425	±0	±0
OVERALL (1396)	329647537	96%	72%	741	-7	+44

- ► An SAS^+ planning task Π is a 4-tuple $\langle V, I, O, G \rangle$, where:
 - ► *V* is a finite set of finite-domain state variables.
 - I is the initial state.
 - *O* is a finite set of operators.
 - G is the goal.
- A fact is a pair $\langle v, d \rangle$ with $v \in V$ and $d \in Dom(v)$.
- ► An operator consists of preconditions and effects.

Dependency of operators

- Operator o₁ disables o₂ if o₂ requires a variable to have a particular value and o₁ assigns another value to the variable.
- Operators o₁ and o₂ conflict if both of them affect a common variable differently.
- Operators o₁ and o₂ are dependent if o₁ disables o₂, or o₂ disables o₁, or o₁ and o₂ conflict.

Disjunctive action landmarks

A disjunctive action landmark for a set of facts *F* in state *s* is a set of operators *L* such that every applicable operator sequence that starts in *s* and ends in $s' \supseteq F$ contains at least one operator $o \in L$.

Necessary enabling sets

A necessary enabling set for operator $o \notin app(s)$ in state *s* is a disjunctive action landmark for pre(o) in *s*.

Future work

Investigation of other partial order reduction methods and their combination with our POR framework.

References

Strong stubborn sets

Definition

Let Π be a planning task and let *s* be a state. A strong stubborn set in *s* is a set of operators $T_s \subseteq O$ such that:

- 1. T_s contains all the operators that interfere with some applicable operator in T_s .
- 2. T_s contains a necessary enabling set in *s* for each inapplicable operator in T_s .

3. T_s contains a disjunctive action landmark for the goal in s.

■ Y. Chen, Y. Xu, and G. Yao Stratified Planning. IJCAI 2009.

Y. Chen and G. Yao Completeness and Optimality Preserving Reduction for Planning. *IJCAI 2009*.

P. Godefroid Partial-Order Methods for the Verification of Concurrent Systems – An Approach to the State-Explosion Problem. 1996.

M. Helmert and G. Röger How Good is Almost Perfect? AAAI 2008.

A. Valmari Stubborn sets for reduced state space generation. APN 1989.

Y. Xu, Y. Chen, Q. Lu, and R. Huang Theory and Algorithms for Partial Order Based Reduction in Planning. *CoRR 2011*.

¹Research Group Foundations of Artificial Intelligence, University of Freiburg, Germany ²Artificial Intelligence Group, University of Basel, Switzerland