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Introduction

Heuristic search
I Popular technique to facilitate planning.
I Drawback: number of state explorations scales exponentially

even under generous assumptions [Helmert and Röger 2008].
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Partial order reduction
I Observation: unnecessary interleavings of transitions
I Idea: Enforce a particular ordering among operators.
I Problem: Original techniques in model checking are sound

[Valmari 1989, Godefroid 1996], but adaptations for planning are not
[Chen and Yao 2009, Xu et al. 2011, Chen et al. 2009].

I Objective: Adapt original techniques with as little modification as
possible.

Preliminaries

SAS+ planning tasks
I An SAS+ planning task Π is a 4-tuple 〈V, I,O,G〉, where:

I V is a finite set of finite-domain state variables.
I I is the initial state.
I O is a finite set of operators.
I G is the goal.

I A fact is a pair 〈v, d〉 with v ∈ V and d ∈ Dom(v).
I An operator consists of preconditions and effects.

Dependency of operators
I Operator o1 disables o2 if o2 requires a variable to have a particular value

and o1 assigns another value to the variable.
I Operators o1 and o2 conflict if both of them affect a common variable

differently.
I Operators o1 and o2 are dependent if o1 disables o2, or o2 disables o1, or

o1 and o2 conflict.

Disjunctive action landmarks
A disjunctive action landmark for a set of facts F in state s is a set of
operators L such that every applicable operator sequence that starts in s and
ends in s′ ⊇ F contains at least one operator o ∈ L.
Necessary enabling sets
A necessary enabling set for operator o /∈ app(s) in state s is a disjunctive
action landmark for pre(o) in s.

Strong stubborn sets

Definition
Let Π be a planning task and let s be a state. A strong stubborn set in s is a
set of operators Ts ⊆ O such that:
1. Ts contains all the operators that interfere with some applicable operator

in Ts.
2. Ts contains a necessary enabling set in s for each inapplicable operator

in Ts.
3. Ts contains a disjunctive action landmark for the goal in s.

Strong stubborn set computation (conceptually)

Algorithm 1 Strong stubborn set computation for state s
Input: State s
Output: Strong stubborn set Ts for s

1: Ts← LG
s for some disjunctive action landmark LG

s for G in s
2: repeat
3: for all o ∈ Ts do
4: if o ∈ app(s) then
5: Ts← Ts ∪ dep(o)
6: else
7: Ts← Ts ∪ No

s for some nec. enabling set No
s for o in s

8: until Ts reaches a fixed-point
9: return Ts

Experiments
Node generations and coverage of

I Plain A*,
I A* with Expansion Core

(EC [Chen and Yao 2009,
Xu et al. 2011]), and

I A* with strong stubborn sets (SSS),
all guided by the LM-cut heuristic.

I Nodes and coverage +EC,
+SSS relative to plain A*

I green/red:
improvement/deterioration
compared to plain A*

I bold: best result per domain

Nodes generated Coverage
Domain (problems) A* +EC +SSS A* +EC +SSS
PARCPRINTER-08 (30) 2461106 100% <1% 18 ±0 +12
PARCPRINTER-OPT11 (20) 2460475 100% <1% 13 ±0 +7
WOODWK-OPT08 (30) 7334811 17% 3% 17 +5 +11
WOODWK-OPT11 (20) 7334070 17% 3% 12 +3 +7
SATELLITE (36) 4283651 64% 5% 7 ±0 +3
LOGISTICS00 (28) 12855134 100% 17% 20 ±0 +1
OPENSTACKS-OPT08 (30) 34336295 100% 52% 18 −2 +2
OPENSTACKS-OPT11 (20) 34209201 100% 52% 13 −2 +2
ELEVATORS-OPT08 (30) 18561161 100% 55% 19 ±0 +3
ELEVATORS-OPT11 (20) 18006303 100% 55% 16 ±0 +2
PSR-SMALL (50) 1859026 100% 80% 49 −1 ±0
MPRIME (35) 921359 100% 84% 22 −1 ±0
ROVERS (40) 1281967 99% 87% 7 ±0 +1
PIPESWORLD-TK (50) 585963 100% 97% 9 −1 ±0
PIPESWORLD-NOTK (50) 2798494 100% 99% 17 −1 ±0
FREECELL (80) 5543463 100% 100% 15 −4 −3
GRIPPER (20) 10807891 100% 100% 7 −1 ±0
PARKING-OPT11 (20) 39354 100% 100% 2 −1 −1
SCANALYZER-08 (30) 7781870 100% 100% 14 ±0 −1
SCANALYZER-OPT11 (20) 7781742 100% 100% 11 ±0 −1
TRUCKS (30) 11687203 100% 100% 10 −1 −1
REMAINING DOMAINS (707) 136716998 100% 94% 425 ±0 ±0
OVERALL (1396) 329647537 96% 72% 741 −7 +44

Future work

I Investigation of other partial order reduction methods
and their combination with our POR framework.
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