
A Stubborn Set Algorithm for Optimal Planning
Yusra Alkhazraji1 and Martin Wehrle2 and Robert Mattmüller1 and Malte Helmert2

Abstract. We adapt a partial order reduction technique based on
stubborn sets, originally proposed for detecting dead ends in Petri
Nets, to the setting of optimal planning. We demonstrate that stub-
born sets can provide significant state space reductions on standard
planning benchmarks, outperforming the expansion core method.

1 INTRODUCTION

Heuristic search is one of the most successful approaches for
domain-independent planning, especially in the case of optimal plan-
ning [6, 5]. However, recent results show that the potential of conven-
tional heuristic search algorithms for optimal planning is severely
limited: even with almost perfect heuristics (which are hardly avail-
able in practice), search effort scales exponentially in the size of the
planning task in typical planning domains [7]. This motivates the use
of additional pruning techniques for optimal heuristic search.

In this context, various pruning techniques based on partial or-
der reduction (POR) have been proposed [2, 10, 3]. Partial order
reduction has been originally introduced by Valmari [8] for dead-
end detection in Petri nets. Valmari proposed the notion of stubborn
sets, restricting exploration to a subset of applicable transitions in
every state while maintaining completeness. Stubborn sets exploit
that independent transitions do not have to be considered in all pos-
sible orderings. However, despite the need for pruning in planning,
and despite the fact that partial order reduction techniques have ex-
isted in the model checking area for decades, the original stubborn
set algorithms have not yet been properly adapted to and evaluated
in planning. Recent results [9] show that stubborn sets generalize the
expansion core method proposed for planning [2], which makes a
comparison between these approaches particularly interesting.

We present a pruning algorithm for optimal planning based on
strong stubborn sets (SSS), adapting an algorithm proposed by Gode-
froid for model checking [4]. We show that the algorithm preserves
optimality and experimentally demonstrate that it significantly re-
duces search effort for standard planning benchmarks.

2 PRELIMINARIES

An SAS+ planning task Π is a tuple 〈V, I,O,G〉 of state variables
V , an initial state I , operators O and a goal G. A fact is a pair
〈v, d〉 with v ∈ V and d ∈ domain(v). A state is a set of facts
that associates a value with each state variable in V . Operators are
defined in terms of a precondition pre(o), an effect eff (o), and a
cost cost(o) ∈ R+

0 . Preconditions, effects, and the goal G are sets of
facts. An operator is applicable in state s iff pre(o) ⊆ s; the opera-
tors applicable in s are denoted by app(s). Applying operator o in s

1 University of Freiburg, {alkhazry,mattmuel}@informatik.uni-freiburg.de
2 University of Basel, {martin.wehrle,malte.helmert}@unibas.ch

results in state s′ which agrees with eff (o) on all state variables men-
tioned in eff (o) and with s on all other state variables. The objective
of optimal planning is to find a cheapest sequence of applicable ac-
tions transforming I into a goal state, i. e., a state s ⊇ G.

Definition 1 (dependency). Let Π be a planning task with variables
V and operators O, and let o1, o2 ∈ O.
1. Operator o1 disables o2 if there exists a variable v ∈ V and facts
〈v, d1〉 ∈ eff (o1) and 〈v, d2〉 ∈ pre(o2) such that d1 6= d2.

2. Operators o1 and o2 conflict if there exists a variable v ∈ V and
facts 〈v, d1〉 ∈ eff (o1) and 〈v, d2〉 ∈ eff (o2) such that d1 6= d2.

3. Operators o1 and o2 are dependent if o1 disables o2, or o2 dis-
ables o1, or o1 and o2 conflict. We write dep(o) for the set of
operators o′ ∈ O with which o is dependent.

3 STRONG STUBBORN SETS
Proving correctness of a partial order reduction method is notoriously
difficult: several published approaches in planning [1, 2, 11], which
follow similar ideas as earlier work in model checking without being
entirely equivalent, fail to preserve completeness due to technical er-
rors [9]. To avoid the same pitfall, we stay close to the definition of
SSS in model checking [4]. Apart from differences in the formalism
used, the main change required is to account for the different objec-
tive: in planning, we must find a goal state, rather than a dead-end
state (a state s with app(s) = ∅) as in the original work on SSS.

To define SSS, we need the closely related definitions of disjunc-
tive action landmarks [5] and necessary enabling sets [4]. A disjunc-
tive action landmark for a set of facts F in state s is a set of operators
L such that every applicable operator sequence that starts in s and
ends in s′ ⊇ F contains at least one operator o ∈ L. A necessary
enabling set for operator o /∈ app(s) in state s is a disjunctive action
landmark for pre(o) in s.

Definition 2 (strong stubborn set). Let Π be a planning task with
operators O and goal G, and let s be a state of Π. A strong stubborn
set (SSS) in s is an operator set Ts ⊆ O such that:
1. For each o ∈ Ts ∩ app(s), we have dep(o) ⊆ Ts.
2. For each o ∈ Ts \ app(s), we have No

s ⊆ Ts for some necessary
enabling set No

s of o in s.
3. Ts contains a disjunctive action landmark for G in s.

The SSS computation algorithm (Alg. 1) starts with a disjunctive
action landmark forG (thus satisfying condition 3 of Def. 2) and adds
operators to the candidate set until conditions 1 and 2 are satisfied.
Hence, Alg. 1 indeed computes a SSS.

Alg. 1 is called by a search algorithm like A* or IDA* before the
expansion of each state s. Given the SSS Ts, it is sufficient for the
search algorithm to expand s by applying the operators in Tapp(s) :=
Ts ∩ app(s) instead of the complete set app(s), while preserving
completeness and optimality.



Algorithm 1 Strong stubborn set computation for state s

1: Ts ← LG
s for some disjunctive action landmark LG

s for G in s
2: repeat
3: for all o ∈ Ts do
4: if o ∈ app(s) then
5: Ts ← Ts ∪ dep(o)
6: else
7: Ts ← Ts ∪No

s for some nec. enabling set No
s for o in s

8: until Ts reaches a fixed-point
9: return Ts

Theorem 1. Using only Tapp(s) instead of app(s) when expanding
a state s during A* search preserves completeness and optimality.

Proof. We show that for all states s from which an optimal plan con-
sisting of n > 0 operators exists, Tapp(s) contains an operator start-
ing such a plan. A simple induction then shows that A* restricting
successor generation to Tapp(s) is optimal.

Let Ts be a SSS as computed by Alg. 1 and π = o1, . . . , on be an
optimal plan for s. Since Ts contains a disjunctive action landmark
for the goal, π contains an operator from Ts. Let ok be the operator
with smallest index in π that is also contained in Ts, i.e., ok ∈ Ts

and {o1, . . . , ok−1} ∩ Ts = ∅. Then:
1. ok ∈ app(s): otherwise by the definition of SSS, a necessary

enabling set Nok
s for ok would have to be contained in Ts, and at

least one operator fromN
ok
s would have to occur before ok in π to

enable ok, contradicting that ok was chosen with smallest index.
2. ok is independent of o1, . . . , ok−1: otherwise, using ok ∈ app(s)

and the definition of SSS, at least one of o1, . . . , ok−1 would have
to be contained in Ts, again contradicting the assumption.

Hence, we can move ok to the front: ok, o1, . . . , ok−1, ok+1, . . . , on
is also a plan for Π. It has the same cost as π and is hence optimal.
Thus, we have found an optimal plan of length n started by an oper-
ator ok ∈ Tapp(s), completing the proof.

4 EXPERIMENTS
We investigated the pruning power of SSS by comparing A∗ guided
by the state-of-the-art LM-cut heuristic [5] in three configurations:
without POR, with the corrected expansion core method (EC) [2, 9],
and with SSS. The results on all IPC optimal planning domains up to
IPC 2011 are shown in Tab. 1, with those domains combined where
all configurations solve exactly the same instances.

The numbers of node generations are sums over all instances per
domain solved by all configurations. We observe that with POR the
number of generated nodes never increases and often decreases com-
pared to plain A∗, and that SSS often has better pruning power than
EC. The advantage of SSS is particularly pronounced in LOGIS-
TICS00, PARCPRINTER, SATELLITE, and WOODWORKING.

To assess the impact of the computational overhead of comput-
ing SSS on planner performance, we measured coverage and search
times (with time limit 30 min and memory limit 2 GB). We observe
that the pruning due to SSS translates to significantly higher over-
all coverage. In many domains, it also results in significantly lower
search times. If, however, the number of generated nodes is similar to
or the same as with plain A∗, then the computational overhead may
lead to increased overall runtime (FREECELL, GRIPPER, PARKING,
PIPESWORLD, SCANALYZER, and TRUCKS).

Time needed for the precomputation of the interference relation
is negligible in most domains from Tab. 1, except for MPRIME and
SCANALYZER, where it is about as high as pure search time. Only

Table 1. Comparison of plain A∗, A∗ with EC, and A∗ with SSS, all
guided by the LM-cut heuristic (nodes +EC, +SSS in % of plain A∗).

Nodes generated Coverage
Domain (problems) A∗ +EC +SSS A∗ +EC +SSS

ELEVATORS-OPT08 (30) 18561161 100% 55% 19 19 22
ELEVATORS-OPT11 (20) 18006303 100% 55% 16 16 18
FREECELL (80) 5543463 100% 100% 15 11 12
GRIPPER (20) 10807891 100% 100% 7 6 7
LOGISTICS00 (28) 12855134 100% 17% 20 20 21
MPRIME (35) 921359 100% 84% 22 21 22
OPENSTACKS-OPT08 (30) 34336295 100% 52% 18 16 20
OPENSTACKS-OPT11 (20) 34209201 100% 52% 13 11 15
PARCPRINTER-08 (30) 2461106 100% <1% 18 18 30
PARCPRINTER-OPT11 (20) 2460475 100% <1% 13 13 20
PARKING-OPT11 (20) 39354 100% 100% 2 1 1
PIPESWORLD-NOTK (50) 2798494 100% 99% 17 16 17
PIPESWORLD-TK (50) 585963 100% 97% 9 8 9
PSR-SMALL (50) 1859026 100% 80% 49 48 49
ROVERS (40) 1281967 99% 87% 7 7 8
SATELLITE (36) 4283651 64% 5% 7 7 10
SCANALYZER-08 (30) 7781870 100% 100% 14 14 13
SCANALYZER-OPT11 (20) 7781742 100% 100% 11 11 10
TRUCKS (30) 11687203 100% 100% 10 9 9
WOODWK-OPT08 (30) 7334811 17% 3% 17 22 28
WOODWK-OPT11 (20) 7334070 17% 3% 12 15 19
REMAINING DOMAINS (707) 136716998 100% 94% 425 425 425
OVERALL (1396) 329647537 96% 72% 741 734 785

in a few domains such as FREECELL and PARKING, even excluding
precomputation times, plain A∗ is faster than A∗ with SSS, although
the numbers of generated nodes are the same. This can be attributed
to the per-state overhead of computing SSS.

5 CONCLUSION
We have shown that SSS can alleviate the state explosion problem in
optimal planning. For the future, we would like to further explore and
refine the computation of SSS. In particular, this includes the inves-
tigation of the impact of different choices of the necessary enabling
sets within the generic framework of SSS.

ACKNOWLEDGEMENTS
This work was supported by the German Research Council (DFG) as
part of SFB/TR 14 AVACS and of the KontWiss project.

REFERENCES
[1] Y. Chen, Y. Xu, and G. Yao, ‘Stratified planning’, in IJCAI 2009, pp.

1665–1670, (2009).
[2] Y. Chen and G. Yao, ‘Completeness and optimality preserving reduc-

tion for planning’, in IJCAI 2009, pp. 1659–1664, (2009).
[3] A. J. Coles and A. Coles, ‘Completeness-preserving pruning for opti-

mal planning’, in ECAI 2010, pp. 965–966, (2010).
[4] P. Godefroid, Partial-Order Methods for the Verification of Concurrent

Systems — An Approach to the State-Explosion Problem, 1996.
[5] M. Helmert and C. Domshlak, ‘Landmarks, critical paths and abstrac-

tions: What’s the difference anyway?’, in ICAPS 2009, pp. 162–169,
(2009).

[6] M. Helmert, P. Haslum, and J. Hoffmann, ‘Flexible abstraction heuris-
tics for optimal sequential planning’, in ICAPS 2007, pp. 176–183,
(2007).

[7] M. Helmert and G. Röger, ‘How good is almost perfect?’, in AAAI
2008, pp. 944–949, (2008).

[8] A. Valmari, ‘Stubborn sets for reduced state space generation’, in APN
1989, pp. 491–515, (1991).

[9] M. Wehrle and M. Helmert, ‘About partial order reduction in planning
and computer aided verification’, in ICAPS 2012, (2012).

[10] J. Wolfe and S. J. Russell, ‘Bounded intention planning’, in IJCAI 2011,
pp. 2039–2045, (2011).

[11] Y. Xu, Y. Chen, Q. Lu, and R. Huang, ‘Theory and algorithms for partial
order based reduction in planning’, CoRR, abs/1106.5427, (2011).


