A Planning Graph Heuristic for Forward-Chaining Adversarial Planning

Pascal Bercher and Robert Mattmüller

Institute for Computer Science University of Freiburg

ECAI 2008, Patras, Greece

Wednesday, July 23, 2008

Introduction Search Heuristic Results

Introduction

Motivation

- ► Given: Adversarial planning problem (extensive two-player game)
- Desired: Strong plan (winning strategy)

Technically

- Two players taking turns
- STRIPS-style state and action encoding
- Full observability
- Reduces to evaluation of AND/OR graph over physical states

Introduction Search Heuristic Results

Example

Problem

- Logistics-like problem
- Pilot and co-pilot have different capabilities (loading, unloading, flying, re-fuelling, no-ops)
- Co-pilot wants to sabotage transport task

AND/OR Graph and Solution

Search

- Alternatives:
 - Symbolic regression search (cf. MBP)
 - Heuristically guided explicit-state progression search
- Here: Variant of AO* algorithm
 - Search over AND/OR graph
 - Elimination of duplicate nodes
 - Approximative updates of cost estimates
- How to initialize cost estimates at leaf nodes? Variant of FF heuristic.

Heuristic: Example

- \triangleright Variables: v_1, \ldots, v_8
- ► Rules in relaxed problem:

$$r_i = \langle v_1 \rightarrow v_{i+1} \rangle, \quad i = 1, 2, 3, 4, 5$$

 $r_j = \langle v_j \rightarrow v_{j+1} \rangle, \quad j = 6, 7$

- ▶ Rules controlled by protagonist: $\{r_1, r_2, r_3, r_4, r_5, r_7\}$
- ▶ Rules controlled by antagonist: $\{r_1, r_2, r_6\}$
- ▶ Current state: {v₁}
- Goal: $\{v_1, \dots, v_8\}$

Heuristic: Relaxed Plan Postprocessing

- ▶ Selected rules for protagonist: $\{r_1, r_2, r_3, r_4, r_5, r_7\}$
- ▶ Selected rules for antagonist: $\{r_6\}$
- Redistribution of rules:
 - ▶ Revised selected rules for protagonist: $\{r_3, r_4, r_5, r_7\}$
 - lacktriangle Revised selected rules for antagonist: $\{r_1, r_2, r_6\}$
- ▶ Return heuristic value $2 \cdot |\{r_3, r_4, r_5, r_7\}| = 8$.

Experiments and Results

- ► Logistics-like problems as in the example, varying problem sizes
- Comparison of breadth-first search, AO* search with FF heuristic and adversarial FF heuristic, and MBP.

		BFS		AO* + $h_{ m FF}$		AO* + $h_{ m advFF}$		MBP	
ℓ	p	time	nodes	time	nodes	time	nodes	time	BDD
2	1	0.014	44	0.025	37	0.026	37	0.000	6601
2	2	0.048	152	0.071	88	0.072	78	0.016	84424
3	3	0.354	2106	0.202	625	0.260	628	0.380	23068
3	4	0.870	8211	0.463	1871	0.232	605	1 780	165718
3	5	5.556	43785	1.437	6917	0.321	794	9.041	365272
3	6	87.691	237264	16.323	63498	1.157	4164	44.287	546666
4	6	_	722750	76.718	169349	82.701	194304	130.064	834704
4	7	_	771629	373.553	510738	99.639	225544	_	1

 ℓ : #locations, p: #packages, BDD: #BDD nodes, red: worst, blue: best

Conclusion

- Domain-independent heuristics promising approach to conditional/adevrsarial planning
- Explicit-state progression competitive with symbolic regression
- Potential application in General Game Playing
- Future work: Assesment of other domain-independent heuristics in conditional setting

