
Combining Symbolic Representations
for Solving Timed Games

Rüdiger Ehlers1, Robert Mattmüller2, and Hans-Jörg Peter1

1 Reactive Systems Group
Saarland University, Germany

{ehlers | peter}@cs.uni-saarland.de
2 Foundations of Artificial Intelligence Group

Freiburg University, Germany
mattmuel@informatik.uni-freiburg.de

Abstract. We present a general approach to combine symbolic state
space representations for the discrete and continuous parts in the synthe-
sis of winning strategies for timed reachability games. The combination
is based on abstraction refinement where discrete symbolic techniques
are used to produce a sequence of abstract timed game automata. Af-
ter each refinement step, the resulting abstraction is used for computing
an under- and an over-approximation of the timed winning states. The
key idea is to identify large relevant and irrelevant parts of the pre-
cise weakest winning strategy already on coarse, and therefore simple,
abstractions. If neither the existence nor nonexistence of a winning strat-
egy can be established in the approximations, we use them to guide the
refinement process. Based on a prototype that combines binary deci-
sion diagrams [7,9] and difference bound matrices [5], we experimentally
evaluate the technique on standard benchmarks from timed controller
synthesis. The results clearly demonstrate the potential of the new ap-
proach concerning running time and memory consumption compared to
the classical on-the-fly algorithm implemented in Uppaal-Tiga [10,4].

1 Introduction

In the last two decades, the timed automaton model by Alur and Dill [2] has
become a de-facto standard for modeling timed asynchronous systems. A natural
extension to their classical definition is to distinguish between internally and
externally controllable behaviors [15,3]. The automated analysis of such so-called
open systems requires a game-based computational model where an internal
controller plays against an external environment. Solving problems defined on
open systems (such as, e.g., timed controller synthesis [15]) is an active area
of research [15,3,13,1,10,4,8,16] and usually corresponds to computing winning
strategies in two-player games played on timed automata.

A predominant source of complexity in this setting is the large size of the
concurrent control structure induced by a network of communicating timed au-
tomata. Current timed game solvers such as Uppaal-Tiga [10,4] represent the
continuous parts symbolically, but the location information explicitly. Hence,

such semi-symbolic representations fail in the analysis of timed systems with
many concurrent components causing a discrete blow-up in the state space.

In this paper, we tackle this problem by introducing an abstraction refinement
approach that uses discrete symbolic techniques (e.g., binary decision diagrams
(BDDs) [7,9,18]) to produce a sequence of syntactic abstractions with increasing
precision of the input network of timed automata. We obtain the abstractions by
merging locations such that the abstract control structure strictly weakens one
player and strengthens her opponent. For each abstraction, we apply traditional
solving algorithms to obtain an under- and an over-approximation of the winning
states of the reachability player (e.g., one can use [10], which works fine for timed
games with few locations, to obtain under-approximations).

Instead of solving the original game on the most precise control structure
directly, our key idea is to solve a sequence of simpler games where each solv-
ing process reuses the approximations obtained from the previous one. That
is, we use winning state set approximations computed on coarse (and there-
fore simple) abstractions to (1) characterize interpolants for refinement that
ensure an increase in precision, and (2) derive pruning rules and optimizations
that accelerate subsequent game solving processes over finer abstractions. Both
soundness and effectiveness of our approach rely on the fact that whenever an
abstract state appears in an under-approximation, all subsumed concrete states
are surely winning, and dually, whenever an abstract state is not contained in
an over-approximation, all subsumed concrete states are surely not winning.

In our prototype, the use of BDDs allows us to represent sets of locations
efficiently and to refine abstract games arbitrarily while retaining an algorithmi-
cally simple check for the existence of abstract transitions. Based on (federations
of) difference bound matrices (DBMs) [5], we use our own implementation of [10]
for obtaining winning state set approximations.

Example. Consider the timed game automaton G given in Fig. 1(a), where
l0 is the initial and l3 is the goal location. The reachability player (3) controls
the dashed edges and wants to reach l3 while the safety player (2) controls the
solid edges and wants to avoid l3. We abstract G by merging its locations. The
abstract locations so obtained are connected via abstract transitions which are
either (1) surely available, i.e., there is a corresponding concrete transition from
each represented location, or (2) potentially available, i.e., there is a correspond-
ing concrete transition from some represented location. Figures 1(b) and 1(c)
show abstract automata with one abstract location representing the concrete
goal location l3 and one abstract location representing the remaining locations
l0, l1, and l2. In dGe0, we strengthen 3 by letting her play on the potentially
available transitions and weaken 2 by letting him play on the ones that are surely
available. Dually, we weaken 3 and strengthen 2 in bGc0. In dGe0, the abstract
initial location (together with the initial clock valuation x = 0) is winning for
3, whereas in bGc0, it is winning for 2. Hence, we cannot determine the winner
of G based on this coarse initial abstraction. Therefore, we refine the abstraction
by separating l0 in an additional abstract location. The finer abstractions are
shown in Figures 1(d) and 1(e). Now, 3 wins in bGc1 and, therefore, also in G.

2

l0

l1 l2

l3

x ≥ 1

x ≥ 2

x ≥ 3

x ≥ 2

(a) G

l0

l1 l2

l3

x ≥ 1

x ≥ 2

(b) dGe0

l0

l1 l2

l3

(c) bGc0

l0

l1 l2

l3

x ≥ 1

x ≥ 2

(d) dGe1

l0

l1 l2

l3

x ≥ 1

x ≥ 2

x ≥ 3

(e) bGc1

Fig. 1. Game automaton G, abstractions dGe0/bGc0, and refinements dGe1/bGc1

Related Work. The definition of the game solving problem in the framework of
timed automata [2] was given by Maler et al. [15,3]. In their fundamental work,
the decidability of the problem was shown by demonstrating that the standard
discrete attractor construction [19] on the region graph suffices to obtain winning
strategies. Henzinger and Kopke showed that this construction is theoretically
optimal by proving EXPTIME-completeness of the problem [13]. A first on-
the-fly solving technique was proposed by Altisen and Tripakis which, however,
requires an expensive preprocessing step [1]. As a remedy to this problem, Cassez
et al. proposed a fully on-the-fly solving algorithm that combines the backward
attractor construction with a forward zone graph exploration [10,4]. Recently,
we developed an incremental variant that takes the compositional nature of
networks of timed automata into account [16]. As a continuation of this line of
research, the approach presented here can be seen as a further generalization that
(1) provides the general basis for more fine-grained (location-based) abstractions,
and (2) reports on a concrete application combining BDDs and DBMs.

Henzinger et al. adapted counterexample-guided abstraction refinement for
games [12] where abstractions are defined over game states, counterexamples are
abstract strategies, and refinement corresponds to the splitting of abstract game
states. De Alfaro et al. introduced three-valued abstractions [11] where the refine-
ment process is guided by differences between under- and over-approximations
of the game states. Due to their semantic (i.e., state-based) natures, both tech-
niques can be seen as a generalization of the approach presented in this paper.
However, due to the lack of suitable data structures, an immediate implemen-
tation of these techniques for timed games, resulting in an efficient solving al-
gorithm, appears not (yet) possible. We argue that location-based abstractions
are an interesting sweet spot between granularity and implementability.

We propose an optimization technique that prunes irrelevant moves early in
the refinement process which resembles slicing from model checking. Brückner
et al. proposed a technique that combines slicing with abstraction refinement [6].
While their work only considers model checking problems for closed systems, our
approach is capable of handling the strictly more general class of open systems.

3

Outline. Section 2 recalls the necessary foundations. In Sect. 3, we first for-
malize the notion of abstract games and give an algorithm that constructs an
abstract game from a given concrete game and a location partition. Based on
that, Sect. 4 describes an approximation-guided refinement loop, which is the
formal basis for our prototype implementation presented in Sect. 5.

2 Preliminaries

2.1 Timed Games

We consider two-player, zero-sum reachability games played on timed automata.
We distinguish between the reachability player 3 whose objective is to eventually
reach some goal state, and the safety player 2 whose objective is to always
avoid goal states. Following the setting of [3], we assume that timed automata
are strongly nonzeno, i.e., there are no cycles where a player can play a time-
convergent sequence of moves.

Timed Game Automata. A timed game automaton (TGA) [2,15,3] G is a
tuple (L, I,∆,X,G), where L is a finite set of locations, I ⊆ L is a set of initial
locations, ∆ ⊆ L×C(X)×P(X)×L is the set of transitions3, X is a finite set of
real valued clocks, and G ⊆ L is a set of goal locations. We distinguish between
controller ∆2 and environment transitions ∆3 such that ∆ = ∆2] ∆3. The
clock constraints ϕ ∈ C(X) are recursively defined as ϕ = true |x ./ c |ϕ1 ∧ ϕ2,
where x is a clock in X, c is a constant in IN0, ./ ∈ {<,≤,≥, >}, and ϕ1,
ϕ2 are constraints in C(X). A clock valuation t : X → IR≥0 assigns a non-
negative value to each clock and can also be represented by a |X|-dimensional
vector t ∈ R where R = IRX

≥0 denotes the set of all clock valuations. For a
constraint ϕ ∈ C(X), we define JϕK = {t ∈ R | t |= ϕ}. We denote clock resets
as t[λ := 0], for a set λ ⊆ X, and uniform time elapse as t + d, for a d ∈ IR≥0.

A partition of the locations L of a TGA G is a set Π = {π1, . . . , πn} ∈
P(P(L) \ {∅}) such that

⋃n
i=1 πi = L and πi ∩ πj = ∅ for i 6= j. We say that a

partition Π ′ is finer than a partition Π, written as Π ≺ Π ′, iff |Π| < |Π ′| and
∀π′ ∈ Π ′ : ∃π ∈ Π : π′ ⊆ π. The refinement of a partition Π with a set R ⊆ L,
is defined as Π|R =

⋃
π∈Π{π ∩R, π \R} \ {∅}. The most fine-grained partition

is denoted as ‹Π with |‹Π| = |L|.
Timed Game Structures. The semantics of timed game automata is defined
in terms of timed game structures. A timed game structure (TGS) S is a tuple
(S, S0, Γ2, Γ3) where S is an infinite set of states, S0 ⊆ S are the initial states,
and Γ2, Γ3 ⊆ S × S are the moves of the players. A TGA (L, I,∆2 ∪∆3, X,G)
induces a timed game structure S = (L×R, I × {0}, Γ2, Γ3) with

Γp =
{

(s, s′) | ∃d > 0: s′ = s+ d
}
∪{

((l, t), (l′, t′)) | ∃〈l, ϕ, λ, l′〉 ∈ ∆p : t |= ϕ ∧ t′ = t[λ := 0]
}
,

3 For the sake of simplicity, we omit transition labels in our formal definition since
control-related concepts such as synchronization or integer variables are just techni-
calities in the construction of the symbolic discrete transition relation.

4

for a player p ∈ {2,3}, where, for a game state s = (l, t) ∈ S and a delay
d ∈ IR≥0, we write s+ d for (l, t + d).

Strategies and Outcomes. A strategy is a function that determines a par-
ticular player’s decisions during the course of a game. In general, a strategy is
defined over a history of events. However, for reachability games under complete
information, it suffices to consider state-based (or memoryless) strategies [15,3].
Formally, a memoryless strategy for player p is a function fp : S → S such that
all s ∈ S are mapped to an s′ with (s, s′) ∈ Γp. Such an s′ always exists because
even if there is no successor location of the current location, it is always possible
to play a time elapse move.

The notion of an outcome of a pair of strategies f3 and f2 defines the set of
states that are reached if player 3 sticks to f3 and player 2 sticks to f2. Let
s and s′ be two states in S with s′ = fp(s), p ∈ {2,3}, then the time elapse
between s and s′, written as δ(s, s′), is defined as (1) δ(s, s′) = d, if s′ = s+ d,
for a d ∈ IR>0; (2) δ(s, s′) = 0, otherwise. The set Outcome(f3, f2) ⊆ S is the
smallest subset of S (wrt. set inclusion), such that the following holds:

– S0 ⊆ Outcome(f3, f2);
– if s ∈ Outcome(f3, f2), then
f2(s) ∈ Outcome(f3, f2), if δ(s, f2(s)) < δ(s, f3(s)), and
f3(s) ∈ Outcome(f3, f2), if δ(s, f3(s)) ≤ δ(s, f2(s)).

With this definition of Outcome, we assume that (1) player 3 chooses the initial
state, and (2) the scheduler resolving concurrent moves is always playing in favor
for player 3. Note that this captures the controller synthesis problem accurately
since any actual controller implementation (player 2) has to be robust wrt.
any low-level scheduling policy or arbitrary environment (player 3). Moreover,
along with complementary winning objectives, the timed games considered here
are always determined and their semantics is equivalent to Uppaal-Tiga [10,4].

Timed Reachability Games. Let S = (S, S0, Γ2, Γ3) be a TGS and K ⊆ S
a set of goal states. Then (S,K) represents a timed reachability game. Player 3
wins (S,K) iff she can enforce a visit to K. More formally, player 3 wins iff
∃f3∀f2 : Outcome(f3, f2) ∩K 6= ∅. A TGA G with goal locations G induces a
timed reachability game Game(G) = (S,K) such that S is the game structure
induced by G and K = G×R is the set of G’s goal states.

2.2 Solving Timed Games

Solving a timed reachability game (S,K) means computing the set of states
from which player 3 has a strategy to enforce an outcome that contains some
states from K. Before we come to the actual solving algorithm, we formalize the
notion of controllability. For a TGS S = (S, S0, Γ2, Γ3), the timed enforceable
predecessor operator PreEnf : P(S)→ P(S) for player 3 is defined as

PreEnf(Y) =
{
r ∈ S | ∃s ∈ Y : (r, s) ∈ Γ3 ∧ (∀d > 0 : s = r + d

⇒ ∀0 ≤ d′ < d : ∀(r′, s′) ∈ Γ2 : r′ = r + d′ ⇒ s′ ∈ Y)
}
.

5

Intuitively, PreEnf(Y) comprises the source states of 3-moves leading to Y that
(1) change the location or (2) delay with no spoiling 2-move in between. It was
shown in [15,3] and later in [10] that PreEnf can be effectively computed using
clock regions or clock zones.

We define those states from which player 3 has a winning strategy to enforce
an outcome that eventually visits some state in K as the attractor of K. For
a reachability game (S,K), the computation of the attractor Attr(S,K) ⊆ S is
carried out by iteratively applying PreEnf in a least fixed point construction on
K, i.e., Attr(S,K) corresponds to µA.A ∪K ∪ PreEnf(A) [15,3]. Note that any
starting point A′, with K ⊆ A′ ⊆ Attr(S,K), converges to Attr(S,K) in the fixed
point construction. We will write Attr(G) as an abbreviation for Attr(Game(G)).
Player 3 wins Game(G) iff S0 ∩ Attr(G) 6= ∅. Dually, player 2 wins Game(G) iff
player 3 does not win, i.e., S0 ∩ Attr(G) = ∅.

Theorem 1. [13] For a TGA G, constructing Attr(G) is complete for EXPTIME.

From a practical point of view, a careful analysis shows that the application of
the (nonconvex) symbolic PreEnf operator is very expensive compared to a zone-
based forward analysis. For this purpose, the authors of [10] propose an on-the-
fly game solving algorithm based on an interleaved fixed point construction that
alternates between a forward exploration of the reachable states and a backward
propagation of the attractor. Here, the number of PreEnf applications is reduced
at the cost of introducing forward steps. In combination with the abstraction
refinement technique presented in this paper, we use this algorithm to compute
attractor under-approximations. In the following, we refer to algorithms such as
[10] as backend solving algorithms.

2.3 Boolean Functions & Binary Decision Diagrams

Sets of locations can be represented by Boolean functions (BFs) F : P(B)→ B

for some finite set of variables B. In practice, reduced ordered binary decision
diagrams (BDDs) [7,9] are the predominantly used data structure for this task.
Since the usual operations on Boolean functions such as conjunction, disjunction
and negation can be implemented as manipulations of BDDs, we treat Boolean
functions and BDDs interchangeably here. In addition, BDDs support existential
(and universal) abstraction. Given a set of variables B′ ⊆ B and a BDD F , the
existential abstraction of F wrt. B′ is written as ∃B′.F and denotes the BDD
that maps those and only those x ⊆ B to true for which there exists some
x′ ⊆ B′ such that F (x′ ∪ (x \ B′)) = true.

3 Abstract Timed Games

We abstract a TGA by merging its locations such that the resulting abstract
control structure strictly privileges one player and penalizes her opponent. We
can do this asymmetric abstraction in two ways: (1) we can weaken player 3
and strengthen player 2 to obtain a weakened reachability game; (2) we can

6

strengthen player 3 and weaken player 2 to obtain a strengthened reachability
game. In this section, we first introduce the formal model which acts as a basis
for showing soundness and completeness of our approach. Then, we describe a
Boolean function-based algorithm for constructing abstractions.

3.1 Abstract Timed Game Automata

A TGA G = (L, I,∆,X,G) with ∆ = ∆3]∆2 and a partition Π of L induce a
weakened TGA bGcΠ and a strengthened TGA dGeΠ :

bGcΠ = (Π, bIcΠ , b∆3cΠ ∪ d∆2eΠ , X, bGcΠ);

dGeΠ = (Π, dIeΠ , d∆3eΠ ∪ b∆2cΠ , X, dGeΠ).

Here, the weak abstracting operator b·c and the strong abstracting operator d·e
are defined as follows. For any set L′ ⊆ L (and in particular I and G), we define

bL′cΠ = {π ∈ Π | π ⊆ L′} and

dL′eΠ = {π ∈ Π | π ∩ L′ 6= ∅}.

Furthermore, for any set ∆′ ⊆ ∆, we define

b∆′cΠ = {〈π, ϕ, λ, π′〉 | ∀l ∈ π : ∃l′ ∈ π′ : 〈l, ϕ, λ, l′〉 ∈ ∆′} and

d∆′eΠ = {〈π, ϕ, λ, π′〉 | ∃l ∈ π : ∃l′ ∈ π′ : 〈l, ϕ, λ, l′〉 ∈ ∆′}.

Intuitively, transitions in b∆′cΠ are surely available, while transitions in d∆′eΠ
are potentially available. It is easy to see that bY cΠ ⊆ dY eΠ , for every set of
locations or transitions Y . We say that a pair of abstract locations (π1, π2) ∈
Π×Π represents a potential connection in a TGA G wrt. a partition Π iff there
is a connecting transition from π1 to π2 in d∆eΠ . The following lemma states
that a refinement never introduces new potential connections.

Lemma 1. For a TGA G with locations L and partitions Π and Π ′ of L with
Π ≺ Π ′, if (π1, π2) ∈ Π×Π is not a potential connection in G wrt. Π, then there
is no potential connection (π′1, π

′
2) ∈ Π ′×Π ′ in G wrt. Π ′ with π′1 ⊆ π1 ∧ π′2 ⊆ π2.

In order to compare abstract attractor sets for different partitions, we need to
flatten them: let a = (π, t) ∈ P(L)×R and A ⊆ P(L)×R. Then, the flattenings

of a and A are defined as â = {(l, t) | l ∈ π} and Â =
⋃
a∈A â. Recall that ‹Π

denotes the most fine-grained partition. With these definitions, we can state the
central soundness lemma.

Lemma 2. Let G be a TGA with locations L and Π be a partition of L. Then,¤�Attr(bGcΠ) ⊆¤�Attr(bGc
Π̃

) = Attr(G) =¤�Attr(dGe
Π̃

) ⊆¤�Attr(dGeΠ).

On the one hand, Lemma 2 guarantees the soundness of our abstractions: once
an abstract state (π, t) appears in the attractor under-approximation, every
subsumed concrete state (l, t), for any l ∈ π, is surely winning for player 3.

7

Dually, once an abstract state (π′, t′) is not contained in the attractor over-
approximation, every subsumed concrete state (l′, t′), for any l′ ∈ π′, is surely
winning for player 2. On the other hand, the lemma ensures that every refine-
ment process eventually ends up with the precise attractor (e.g., when Π = ‹Π).

Soundness of Zeno Abstractions. Location-based abstractions of timed sys-
tems may contain zeno loops giving rise to the existence of physically unmean-
ingful, and therefore spuriously too powerful, winning strategies. Note that this
does not affect the soundness of our approach: there can only be zeno loops in an
over-approximating control structure since we require the original system to be
strongly nonzeno. Then, giving spuriously more power to an over-approximated
player 2 is consistent with the abstraction. On the other hand, giving zeno
moves to an over-approximated player 3 does not increase her winning possibil-
ities since no moves leading to goal states are added.

We do not require a special treatment of zeno behavior in the backend solving
algorithm; we only expect that, for zeno inputs, the algorithm reports sound
(though zeno) strategies (which is the case for [10]).

3.2 Constructing Abstractions using Boolean Functions

The key motivation for considering location-based abstractions is the possibility
to use BFs for the construction of the abstract control structure. In this section,
we describe an algorithm that constructs abstract (both weakened and strength-
ened) TGAs from a concrete TGA G = (L, I,∆,X,G) and a location partition
Π. Note that we only use BFs for the construction of abstract TGAs but not
for the actual game solving: abstract TGAs are represented using the standard
(explicit location) representation [10].

In a preparation step, we encode ∆ as a BF. The set of BF variables B that
we use for our symbolic encoding consists of three disjoint sets BL, BL′ , and
BX , where BL and BL′ represent predecessor- and successor-locations of timed
transitions (with |BL| = |BL′ | = dlog2 |L|e). Furthermore, BX is a set containing
one variable vx for each clock x (for encoding resets in the transition relation)
and one variable vϕ for each atomic constraint ϕ = x ./ c in ∆ (for encoding
guards).

We formalize these encodings in the following predicates over B. First of all,
for each location l ∈ L, the predicate (l) over BL encodes l in binary form,
and similarly, the predicate (l)′ over BL′ encodes the primed version of l as a
successor location. Formally, (l) and (l)′ are functions mapping an assignment to
the variables in BL and BL′ (respectively) to true iff the assignment corresponds
to the location l. As long as the binary encoding of the locations guarantees that
the locations add up to true and are disjoint (

∨
l∈L(l) =

∨
l∈L(l)′ = true and

for all locations l1, l2 ∈ L, (l1) ∧ (l2) ≡ false and (l1)
′ ∧ (l2)

′ ≡ false whenever
l1 6= l2), the details of the encoding are not important and are therefore not
discussed here. We refer to Sect. 5 for further details. Additionally, we define
(ϕ) = vϕ for all atomic constraints ϕ appearing in ∆, (ϕ) =

∧n
i=1(ϕi) for all

nonatomic constraints ϕ = ϕ1∧ . . .∧ϕn and (λ) =
∧
x∈λ vx∧

∧
x∈X\λ ¬vx for all

8

Algorithm 1 BF-based construction of the transition relations of bGcΠ and
dGeΠ , for a given TGA G and a location partition Π.

1: for all p ∈ {2,3} do
2: for all (π, π′) ∈ Π ×Π s.t. A ≡ (π) ∧ (∆p) ∧ (π′)′ 6≡ false do
3: for all ϕ ∈ C(X) and λ ⊆ X s.t. B ≡ A ∧ (ϕ) ∧ (λ) 6≡ false do
4: add 〈π, ϕ, λ, π′〉 to d∆peΠ
5: if

(
(π)⇒ (∃BL′ ∪ BX .B)

)
≡ true then

6: add 〈π, ϕ, λ, π′〉 to b∆pcΠ

resets λ ⊆ X appearing in ∆. These predicates are used to encode the guards of
a transition and the respective resets in the transition relation.

For a set of locations π ⊆ L, we write (π) for
∨
l∈π (l). The Boolean predicate

that symbolically represents the concrete transition relation for a player p ∈
{2,3} can be defined as (∆p) ≡

∨
〈s,ϕ,λ,t〉∈∆p

(s) ∧ (ϕ) ∧ (λ) ∧ (t)′. Note that
the extension of this definition by, e.g., an action-based synchronization of dis-
tributed components or discrete integer variables used in guards and update
expressions is straightforward. However, for the sake of simplicity of our presen-
tation, we stick to the minimalistic, monolithic setting, although our prototype
implementation described in Sect. 5 supports these features. Then, for a network
of timed automata, by building the transition relation for each automaton sepa-
rately, explicitly enumerating all locations in the product automaton is avoided.

Finally, Algo. 1 describes the construction of the transition relations for the
abstract TGAs bGcΠ and dGeΠ from the concrete TGA G and a partition Π.
In the first two lines, the algorithm iterates over the players and all potential
connections (π, π′), which are represented as the BF A. In line 3, we iterate over
all combinations of guards ϕ and resets λ whose corresponding predicates satisfy
A, and compute the BF B that represents all concrete transitions (l, ϕ, λ, l′),
with (l, l′) ∈ π × π′. In line 4, the transition is added to the set of potentially
available transitions. Then, in line 5, the algorithm tests if the transition is surely
available, i.e., if it also needs to be added to the set of surely available transitions
in line 6. It is easy to see that the abstract transition relations constructed by
Algo. 1 satisfy the definition from Sect. 3.1.

Note that the iterations in lines 2 and 3 do not necessarily induce a global
explicit blow-up, as we can use the following optimizations:

1. We use the algorithm only to update the abstract TGAs in an incremental
way during the refinement process. This way, we only need to consider the
abstract locations modified by the respective last refinement step in line 2.

2. According to Lemma 1, if two abstract locations π1 ∈ Π and π2 ∈ Π are not
connected in dGeΠ , we can safely assume that any pair of refined abstract
locations π′1 ⊆ π1 or π′2 ⊆ π2 is also not connected in dGeΠ′ , where Π ≺ Π ′,
π′1 ∈ Π ′, and π′2 ∈ Π ′.

3. In line 3, assuming that we use a BDD to represent the BF A, we can inspect
the BDD structure of A to skip guard/reset combinations that do not occur
for the chosen abstract states π and π′.

9

4 Approximation-Guided Abstraction Refinement

In an abstraction refinement loop, we incrementally solve a sequence of abstract
games with increasing precision converging to the original game. In Sect. 4.1, we
first describe how to obtain sets of concrete locations that serve as interpolants
for refining abstract locations. Then, Sect. 4.2 describes the actual refinement
loop. Finally, Sect. 4.3 investigates optimizations.

4.1 Abstract Location Refinement

We give a general characterization of sets of concrete locations that can be used
as interpolants for splitting abstract locations, i.e., location partitions in Π. All
interpolants selected by any concrete refinement heuristic must satisfy this char-
acterization. Due to the lack of space, we only describe the refinement for enlarg-
ing attractor under-approximations; shrinking attractor over-approximations is
just the dual case and can be done analogously.

Definition 1. Let G = (L, I,∆,X,G) be a TGA, Π be a partition of L, and
bAc = Attr(bGcΠ). A set of concrete locations R ⊆ L is defined to be an effective
interpolant if and only if there is at least one π ∈ Π with ∅ (π ∩ R (π such
that either

(1) there is at least one transition 〈π, ϕ, λ, π′〉 ∈ d∆3eΠ \ b∆3cΠ such that

∀l ∈ π ∩R : ∃l′ ∈ π′ : 〈l, ϕ, λ, l′〉 ∈ ∆3 and

∃t ∈ JϕK : (π, t) /∈ bAc ∧ (π′, t[λ := 0]) ∈ bAc, or

(2) there is at least one transition 〈π, ϕ, λ, π′〉 ∈ d∆2eΠ \ b∆2cΠ such that

∀l ∈ π : (∃l′ ∈ π′ : 〈l, ϕ, λ, l′〉 ∈ ∆2)⇒ l ∈ R and

∃t ∈ JϕK : (π′, t[λ := 0]) /∈ bAc.

In other words, an effective interpolant R refines some abstract locations whose
transitions are either spuriously too weak for player 3 or spuriously too powerful
for player 2. More precisely, guided by an attractor under-approximation, R is
defined based on transitions whose appearance generates winning 3-moves or
whose disappearance removes spoiling 2-moves. There always exists an effective
interpolant unless the abstraction is most precise:

Lemma 3. If ¤�Attr(bGcΠ) (Attr(G), then there exists an effective interpolant.

Refinements with effective interpolants always ensure progress:

Lemma 4. If R ⊆ L is an effective interpolant, then Π ≺ Π|R.

Refinements leading to an increase of precision are based on effective inter-
polants:

Lemma 5. Let R ⊆ L, bAc = Attr(bGcΠ), and bA′c = Attr(bGcΠ|R), where bAc
is the starting point for computing bA′c.
If b̂Ac (‘bA′c, then R is an effective interpolant.

10

4.2 Refinement Loop

For a TGA G = (L, I,∆,X,G), we construct a finite sequence of location parti-
tions of the form Π0 ≺ Π1 ≺ . . . ≺ Πn in a refinement loop, where n is a natural
number and Π0 = {L \G, G} is the trivial initial partition that separates non-
goal locations from goal locations. We use the Boolean function-based technique
from Sect. 3.2 to initially construct and incrementally update a sequence of ab-
stract TGAs converging to G. Note that, instead of constructing the complete
abstract TGA in each refinement cycle, we incrementally update the previous
one by letting Algo. 1 iterate only over those partitions that were affected by
the previous refinement step. Each refinement step is guided by a refinement
heuristic that determines an effective interpolant as defined in Sect. 4.1. More
precisely, after each cycle i, for an effective interpolant Ri ⊆ L, we obtain the
succeeding partition Πi+1 = Πi|Ri.
We compute the initial and intermediate attractor approximations as follows:

bA0c = ¤�Attr(bGcΠ0) and bAi+1c = bAic ∪ ¤�Attr(bGcΠi+1) ;

dA0e = ¤�Attr(dGeΠ0
) and dAi+1e = dAie ∩ ¤�Attr(dGeΠi+1

) .

Hence, every maximal sequence of approximations is of the form

bA0c ⊆ · · · ⊆ bAnc = Attr(G) = dAne ⊆ · · · ⊆ dA0e.

The loop terminates whenever the existence (nonexistence) of a winning strategy
can be established in an under-approximation (over-approximation):
– (I × {0}) ∩ bAic 6= ∅, i.e., player 3 surely has a winning strategy, or
– (I × {0}) ∩ dAie = ∅, i.e., player 2 surely has a winning strategy.
Clearly, this suffices for termination, since if neither of the two conditions is
satisfied, Lemma 3 guarantees that some further refinement is possible.

Theorem 2. The presented abstraction refinement loop always terminates and
yields a sound winning strategy for one of the players upon termination.

4.3 Optimizations

Our abstraction refinement algorithm greatly benefits from several optimiza-
tions which can be applied early in the refinement loop. They are based on
(1) pruning irrelevant moves that do not affect the winning capabilities of ei-
ther player and (2) identifying surely winning states for player 3 based on
a strengthened TGA. For any abstract TGA G = (Π, I,∆,X,G) and its in-
duced game structure (S, S0, Γ2, Γ3), with attractor under-approximation bAc
and over-approximation dAe, one can apply the following optimizations.

States already determined. We can remove all moves that lead out of
states that are already known to be winning for some player. According to
Lemma 2, once a state appears in an attractor under-approximation, it is surely
winning for player 3, and once a state is no more contained in an attractor

11

over-approximation, it is surely winning for player 2. Hence, it is safe to ignore
all moves from {(s, s′) ∈ Γ2 ∪ Γ3 | s ∈ bAc ∨ s /∈ dAe}.
Moves already determined. We can remove all moves that lead to states
that are already known to be winning for the opponent. Hence, it is safe to ignore
all moves from {(s, s′) ∈ Γ2 | s′ ∈ bAc} ∪ {(s, s′) ∈ Γ3 | s′ /∈ dAe}.
States surely winning. Under the assumption that G is a strengthened TGA,
an abstract state in S is surely winning for 3 if each subsumed concrete state
has some concrete move leading to bAc. Hence, we can safely extend PreEnf by
all states (π, t) ∈ Π ×R where
π ⊆ {l ∈ L | ∃π′ ∈ Π : ∃l′ ∈ π′ : (π′, t) ∈ bAc ∧ ((l, t), (l′, t)) ∈ Γ3}.

The first rule can easily be realized in the backend solving algorithm, when
computing bAi+1c (or dAi+1e), by not forward-exploring moves whose source
states are already contained in bAic (or not contained in dAie). The second rule
is realized by reusing bAic as a starting point for bAi+1c (and dAie for dAi+1e).
The third rule is used to extend the results of PreEnf when constructing bAic.

5 Experimental Results

5.1 Prototype Implementation

We implemented a prototype in C++, where we combined the Cudd BDD li-
brary [18] for representing location partitions and the Uppaal-DBM library [5]
for representing federations of clock zones in the attractors.

In the initialization phase, our tool registers all BDD variables after calling
the Nova tool from the SIS toolset [17] for finding efficient assignments of control
locations to BDD variable valuations. Then, as described in Sect. 3.2, we con-
struct the symbolic discrete transition relation representing the control structure
of the input network of TGAs. Note that, although not discussed in detail in the
rest of the paper, in general our approach (and in particular our tool) is able to
handle networks of communicating TGAs with integer variables: such pure dis-
crete features are covered in the construction of the discrete transition relation.
In the next initialization step, we use the discrete transition relation to compute
an over-approximation of the reachable locations in a (cheap) BDD-based least
fixed point computation. The initial partition splits this over-approximation into
(1) the set of potentially reachable goal locations, (2) the set of potentially reach-
able locations from which no goal location is reachable, and (3) the remaining
locations. At the end of the initialization phase, we use Algo. 1 to construct the
initial weakened and strengthened TGAs, where we merge transitions with the
same resets whose guards subsume each other.

In the automatic abstraction refinement loop, we use our implementation
of the backend solving algorithm proposed in [10] to incrementally update an
attractor under-approximation. After each iteration, we check if the concrete
initial state is contained in the abstract attractor. In this case, we terminate
since we can deduce that player 3 surely wins. If this is not the case, we identify
abstract transitions which are spuriously too weak for player 3 and symbolically

12

compute corresponding effective interpolants (by applying the BDD-based pre-
image operator). If there are no abstract transitions for player 3, we identify
abstract transitions which are spuriously too powerful for player 2 and refine
likewise. Then, we split the partition with each computed interpolant (by simple
BDD-based conjunctions) and update the weakened TGA using Algo. 1. Each
refinement step might split a single abstract location by multiple interpolants
resulting in an exponential number of split operations. To address this issue, we
fix a number K of maximal split operations per abstract location.

5.2 Benchmarks

We evaluated our approach on two standard benchmarks4 for timed controller
synthesis and compared the results with Uppaal-Tiga [4] version 4.1.3-0.14.

The Production Cell (Prodcell) example [14,10] represents a manufacturing
plant consisting of a feeding belt, two robot arms, a press, and a departure belt.
The timed game comes into play when synthesizing a controller for the robot
arms such that all parts put onto the feeding belt are transported to the press
right in time and are finally transported to the departure belt.

The Gear Production Stack (GPS) example [16] models a pipeline-like ar-
chitecture that sequentializes a series of stations, each specialized in a certain
processing method. The task is to synthesize a controller for the machine that
ensures that the pieces are transported from station to station right in time. We
investigate the nonextended version without sub-processing units.

Table 1 shows the results of our comparison where we fixed K = 1000. From
left to right, the first two columns describe the name of the benchmark, the
length (in number of plates and stations, resp.), and whether there exists a con-
troller implementation (i.e., a winning strategy for player 2). The next three
columns show the number of explored states, the running time, and the memory
consumption of Uppaal-Tiga. The last four columns show the number of re-
finement steps, the final size (in number of locations) of the abstract TGA, the
running time, and the memory consumption of our prototype. All benchmarks
were executed on an AMD Opteron processor with 2.6 GHz and 4 GB RAM.
The running times are given in seconds and the memory consumptions are given
in MB. The time limit was set to four hours.

The most striking observation is that for both benchmarks, our approach
almost always outperforms Uppaal-Tiga. Only for small benchmark instances,
Uppaal-Tiga performs slightly better. This is due to the preprocessing phase
where all BDD variables are registered and the symbolic discrete transition
relation is constructed. However, for benchmark instances of nontrivial size,
Uppaal-Tiga either runs out of memory or needs at least an order of mag-
nitude more running time than our tool.

The impact of different values for K on the running time and memory con-
sumption is shown in Table 2. Smaller values for K result in a higher number
of refinement steps but lead to a lower memory peak consumption since fewer

4 The Uppaal-Tiga models of the benchmarks are available at
http://www.avacs.org/Benchmarks/Open/formats10.tgz

13

http://www.avacs.org/Benchmarks/Open/formats10.tgz

Uppaal-Tiga Our prototype
Benchmark Cont States Time Mem Steps Abs Time Mem
Prodcell 3 No 15241 1 54 14 293 3 94
Prodcell 4 No 131999 5 74 14 935 13 156
Prodcell 5 No 1238698 240 309 14 2762 39 244
Prodcell 6 No TIMEOUT 14 8212 150 538
Prodcell 7 No TIMEOUT 15 24757 761 1936
Prodcell 8 No TIMEOUT 15 75085 6543 2092
Prodcell 3 Yes 15206 1 54 14 294 3 113
Prodcell 4 Yes 133181 5 75 15 940 11 156
Prodcell 5 Yes 1255498 238 314 15 2772 42 246
Prodcell 6 Yes TIMEOUT 15 8232 172 538
Prodcell 7 Yes TIMEOUT 16 24792 1068 1936
Prodcell 8 Yes TIMEOUT 16 75140 6444 2093
GPS 6 No 170470 4 69 14 274 2 81
GPS 7 No 1406744 40 190 16 560 3 117
GPS 8 No 12123700 545 1327 18 1134 6 133
GPS 9 No MEMOUT 20 2284 20 250
GPS 10 No MEMOUT 23 5518 91 402
GPS 11 No MEMOUT 25 11128 307 948
GPS 12 No MEMOUT 27 22368 1553 3550
GPS 6 Yes 190484 4 69 17 320 2 81
GPS 7 Yes 1647955 48 207 20 704 3 118
GPS 8 Yes 15187763 712 1551 23 1536 9 133
GPS 9 Yes MEMOUT 26 3328 35 223
GPS 10 Yes MEMOUT 29 7168 131 402
GPS 11 Yes MEMOUT 32 15360 461 948
GPS 12 Yes MEMOUT 35 32768 2207 3550

Table 1. Comparison of Uppaal-Tiga with our prototype.

split abstract locations have to be maintained during a single refinement step. If
there is a player 3 winning strategy (Cont=No), more states can be pruned due
to a more fine-grained refinement process. Consequently, the effect of pruning is
weaker if there is no player 3 winning strategy (Cont=Yes). On the other hand,
higher values for K result in a lower number of refinement steps but require
more memory for a single refinement step. The decrease in the running times
results from fewer calls of the backend solving algorithm which reuses the attrac-
tor under-approximation from the last call but has to recompute the reachable
states.

Benchmark Cont K Steps Abs Time Mem
GPS 12 No 50 28 16187 973 661
GPS 12 No 100 27 16215 1047 711
GPS 12 No 200 27 17974 1254 1201
GPS 12 No 300 27 20236 1341 2237
GPS 12 No 500 27 21859 1970 2893
GPS 12 No 1000 27 22368 1553 3550
GPS 12 No 2000 27 22368 1399 3454
GPS 12 No 5000 MEMOUT
GPS 12 Yes 50 358 32768 13872 1947
GPS 12 Yes 100 190 32768 9041 1517
GPS 12 Yes 200 73 32768 4774 1585
GPS 12 Yes 300 44 32768 3167 2621
GPS 12 Yes 500 35 32768 2962 3277
GPS 12 Yes 1000 35 32768 2207 3550
GPS 12 Yes 2000 35 32768 1813 3454
GPS 12 Yes 5000 MEMOUT

Table 2. Comparison of different values for K.

14

Acknowledgment. This work was supported by the German Research Foundation

(DFG) as part of the Transregional Collaborative Research Center “Automatic Verifi-

cation and Analysis of Complex Systems” (SFB/TR 14 AVACS). The authors want to

thank Christoph Scholl for pointing out the SIS toolset [17] for finding efficient assign-

ments of control locations to BDD variable valuations, and the anynomous reviewers

for their helpful comments.

References

1. Altisen, K., Tripakis, S.: Tools for controller synthesis of timed systems. In: 2nd
Workshop on Real-Time Tools (RT-TOOLS). (2002)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theo. Comp. Sci. 126(2) (1994)
3. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed au-

tomata. In: Proc. 5th IFAC Conference on System Structure and Control. (1998)
4. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:

UPPAAL-Tiga: Time for playing games! In: CAV. (2007)
5. Bengtsson, J.: Clocks, DBM, and States in Timed Systems. PhD thesis, Uppsala

University (2002)
6. Brückner, I., Dräger, K., Finkbeiner, B., Wehrheim, H.: Slicing abstractions. Vol-

ume 89., IOS Press (2008) 369–392
7. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE

Trans. Computers 35(8) (1986) 677–691
8. Bulychev, P., Chatain, T., David, A., Larsen, K.G.: Efficient on-the-fly algorithm

for checking alternating timed simulation. In: FORMATS. (2009)
9. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic

model checking: 1020 states and beyond. Inf. Comput. 98(2) (1992)
10. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly

algorithms for the analysis of timed games. In: CONCUR. (2005)
11. de Alfaro, L., Roy, P.: Solving games via three-valued abstraction refinement. In:

CONCUR. (2007)
12. Henzinger, T.A., Jhala, R., Majumdar, R.: Counterexample-guided control. In:

ICALP. (2003)
13. Henzinger, T.A., Kopke, P.W.: Discrete-time control for rectangular hybrid au-

tomata. Theoretical Computer Science 221(1-2) (1999) 369–392
14. Lewerentz, C., Lindner, T., eds.: Formal Development of Reactive Systems - Case

Study Production Cell. (1995)
15. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed

systems (an extended abstract). In: STACS. (1995)
16. Peter, H.J., Mattmüller, R.: Component-based abstraction refinement for timed

controller synthesis. In: RTSS. (2009)
17. Sentovich, E., Singh, K., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj,

H., Stephan, P., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: SIS: A system for
sequential circuit synthesis. Technical report, University of California (1992)

18. Somenzi, F.: CUDD: CU Decision Diagram package release 2.4.2 (2009)
19. Thomas, W.: On the synthesis of strategies in infinite games. In: STACS. (1995)

15

A Proof of Lemma 1

Lemma 1. For a TGA G with locations L and partitions Π and Π ′ of L with
Π ≺ Π ′, if (π1, π2) ∈ Π×Π is not a potential connection in G wrt. Π, then there
is no potential connection (π′1, π

′
2) ∈ Π ′×Π ′ in G wrt. Π ′ with π′1 ⊆ π1 ∧ π′2 ⊆ π2.

Proof. Assume for contradiction that there is a pair (π′1, π
′
2) ∈ Π ′ × Π ′ with

π′1 ⊆ π1 and π′2 ⊆ π2 that represents a potential connection in G wrt. Π ′. Then,
by definition, (π′1, π

′
2) ∈ b∆cΠ , i.e., there is a transition 〈l, ϕ, λ, l′〉 ∈ ∆ such that

l ∈ π′1 and l′ ∈ π′2. Since π′1 ⊆ π1 and π′2 ⊆ π2, also l ∈ π1 and l′ ∈ π2, and hence
π1 and π2 represents a potential connection in G wrt. Π. ut

B Proof of Lemma 2

Lemma 2. Let G be a TGA with locations L and Π be a partition of L. Then,¤�Attr(bGcΠ) ⊆¤�Attr(bGc
Π̃

) = Attr(G) =¤�Attr(dGe
Π̃

) ⊆¤�Attr(dGeΠ).

Proof. We only show that ¤�Attr(bGcΠ) ⊆¤�Attr(bGc
Π̃

) = Attr(G). The other direc-

tion Attr(G) =¤�Attr(dGe
Π̃

) ⊆¤�Attr(dGeΠ) can be shown similarly. For the rest of
this proof, let G = (L, I,∆,X,G), bGcΠ = (Π, bIcΠ , b∆3cΠ ∪d∆2eΠ , X, bGcΠ),

and bGc
Π̃

= (‹Π, bIc
Π̃
, b∆3cΠ̃∪d∆2eΠ̃ , X, bGcΠ̃). Moreover, letKΠ = bGcΠ×R

and K
Π̃

= bGc
Π̃
×R.

Proof of ¤�Attr(bGcΠ) ⊆¤�Attr(bGc
Π̃

). Consider the fixed-point definition of attrac-
tors. By this construction, there are state sets A0, . . . ,An such that A0 = KΠ ,
Ai+1 = PreEnf(Ai) ∪ Ai for i = 0, . . . , n− 1, and An = Attr(bGcΠ). Similarly, we
can construct sets B0, . . . ,Bn such that B0 = K

Π̃
and Bi+1 = PreEnf(Bi) ∪ Bi

for i = 0, . . . , n − 1. Since Attr(bGc
Π̃

) is the least fixed point of the latter con-
struction, we get

Bn ⊆ Attr(bGc
Π̃

). (1)

Moreover, by induction on i, we can show that for all i = 0, . . . , n,“Ai ⊆ “Bi. (2)

For the base case we have to show that K̂Π ⊆ K̂
Π̃

, for which it is sufficient to
prove

⋃
bGcΠ ⊆

⋃
bGc

Π̃
. Let l ∈

⋃
bGcΠ . Then l ∈ π for some π ∈ bGcΠ . By

definition of bGcΠ , π ⊆ G, i.e., l ∈ G. Therefore π′ = {l} ⊆ G, i.e., π′ ∈ bGc
Π̃

and hence l ∈
⋃
bGc

Π̃
.

For the inductive case, assume “Ai ⊆ “Bi. To show that ‘Ai+1 ⊆ ‘Bi+1, let

(l, t) ∈‘Ai+1. By definition of flattening, there exists π ∈ Π such that l ∈ π and
(π, t) ∈ Ai+1 = PreEnf(Ai) ∪ Ai. We distinguish two cases. If (π, t) ∈ Ai, then

(l, t) ∈ “Ai, and, by induction hypothesis, (l, t) ∈ “Bi. Then ({l}, t) ∈ Bi and,
by the definition of the enforceable predecessor operator, ({l}, t) ∈ Bi+1, since

Bi ⊆ Bi+1. Therefore, (l, t) ∈‘Bi+1.

16

Otherwise, if (π, t) ∈ PreEnf(Ai), then either (a) there exists d > 0 such
that (π, t + d) ∈ Ai and for all 0 ≤ d′ < d and all 〈π, ϕ, λ, π′〉 ∈ d∆2eΠ with
t + d′ |= ϕ we have (π′, (t + d′)[λ := 0]) ∈ Ai, or (b) there exists a transition
〈π, ϕ, λ, π′〉 ∈ b∆3cΠ such that t |= ϕ and (π′, t[λ := 0]) ∈ Ai.

First consider case (a). By the definition of flattening and since l ∈ π, we know

that (l, t+d) ∈ “Ai. Moreover, from the definition of d∆2eΠ we can conclude that,
if 〈l, ϕ, λ, l′〉 ∈ ∆2, then 〈π, ϕ, λ, π′〉 ∈ d∆2eΠ for all π′ 3 l′, i.e., for all spoiling
transitions 〈l, ϕ, λ, l′〉 ∈ ∆2 and π′ 3 l′, we have (π′, (t + d′)[λ := 0]) ∈ Ai, in

particular, (l′, (t+d′)[λ := 0]) ∈ “Ai. Now we can apply the induction hypothesis

to obtain that (l, t+ d) ∈ “Bi and for all 0 ≤ d′ < d and all 〈l, ϕ, λ, l′〉 ∈ ∆2, also

(l′, (t+d′)[λ := 0]) ∈ “Bi. By the definition of flattening (wrt. ‹Π), ({l}, t+d) ∈ Bi
and for all 0 ≤ d′ < d and all 〈{l}, ϕ, λ, {l′}〉 ∈ d∆2eΠ̃ , also ({l′}, (t + d′)[λ :=
0]) ∈ Bi. Therefore, ({l}, t) ∈ PreEnf(Bi) = Bi+1, and, by definition of flattening,

(l, t) ∈‘Bi+1.
Now consider case (b). There is a transition 〈π, ϕ, λ, π′〉 ∈ b∆3cΠ such that

t |= ϕ and (π′, t[λ := 0]) ∈ Ai. By definition of b∆3cΠ , for all concrete locations
in π, in particular for our fixed l ∈ π, there is a corresponding successor location
l′ ∈ π′ and a transition 〈l, ϕ, λ, l′〉 ∈ b∆3cΠ such that t |= ϕ and (π′, t[λ := 0]) ∈
Ai, i.e., (l′, t[λ := 0]) ∈ “Ai. By induction hypothesis, (l′, t[λ := 0]) ∈ “Bi and by
the definition of flattening, ({l′}, t[λ := 0]) ∈ Bi. Since 〈{l}, ϕ, λ, {l′}〉 ∈ b∆3cΠ̃ ,
by the definition of the enforceable predecessor operator, ({l}, t) ∈ Bi+1 and by

flattening, (l, t) ∈‘Bi+1. This concludes the inductive proof of Eq. 2.

Since An = Attr(bGcΠ) and since X ⊆ Y implies “X ⊆ “Y , from Eq. 1 and

Eq. 2 for i = n, we get our claim that ¤�Attr(bGcΠ) = Ân ⊆ B̂n ⊆¤�Attr(bGc
Π̃

).

Proof of ¤�Attr(bGc
Π̃

) = Attr(G). We show that bGc
Π̃

is isomorphic to G, specifi-
cally that bGc

Π̃
can be obtained from G by renaming all locations l to {l}. This

follows immediately from the definition of the components of bGc
Π̃

:‹Π = {{l} | l ∈ L},

bIc
Π̃

= {π ∈ ‹Π |π ⊆ I} = {{l} | l ∈ I},
b∆3cΠ̃ = {〈π, ϕ, λ, π′〉 | ∀l ∈ π : ∃l′ ∈ π′ : 〈l, ϕ, λ, l′〉 ∈ ∆3}

= {〈{l}, ϕ, λ, {l′}〉 | 〈l, ϕ, λ, l′〉 ∈ ∆3},
d∆2eΠ̃ = {〈π, ϕ, λ, π′〉 | ∃〈l, ϕ, λ, l′〉 ∈ ∆2 : l ∈ π ∧ l′ ∈ π′}

= {〈{l}, ϕ, λ, {l′}〉 | 〈l, ϕ, λ, l′〉 ∈ ∆2}, and

bGc
Π̃

= {π ∈ ‹Π |π ⊆ G} = {{l} | l ∈ G}.

Because of this isomorphism between bGc
Π̃

and G, the attractor sets satisfy

Attr(bGc
Π̃

) = {({l}, t) | (l, t) ∈ Attr(G)},

and, by definition of flattening, ¤�Attr(bGc
Π̃

) = Attr(G). ut

17

C Proof of Lemma 3

Lemma 3. If ¤�Attr(bGcΠ) (Attr(G), then there exists an effective interpolant.

Proof. Let bAc = Attr(bGcΠ), let K = G × R and KΠ = bGcΠ × R be the

sets of goal states of G and bGcΠ , and assume b̂Ac (Attr(G). Then there exists

a state (l, t) ∈ Attr(G) such that (l, t) /∈ b̂Ac. By definition of flattening, there
is no π ∈ Π such that l ∈ π and (π, t) ∈ bAc, since otherwise we would have

(l, t) ∈ b̂Ac. On the other hand, since (l, t) ∈ Attr(G), there is a finite index
i ≥ 0 such that (l, t) ∈ Ai+1, where A0 = K, Ai+1 = PreEnf(Ai) ∪ Ai for
i = 0, . . . , n − 1, and An = Attr(G). First note that we do not have to consider
the case that (l, t) ∈ A0 = K, since if (l, t) ∈ K, also (π, t) ∈ KΠ , because in the
initial partition Π0 = {L \G,G}, for all π ∈ Π0, either π∩G = ∅ or π ⊆ G, and
this property holds inductively for all partitions Π, since partitions are only split
and not merged. Therefore, if l ∈ G and l ∈ π, then π ⊆ G and hence, π ∈ bGcΠ
and therefore, (π, t) ∈ KΠ , i.e., (l, t) ∈ K̂Π ⊆ b̂Ac. In particular, there is a least
such index i with (l, t) ∈ Ai+1, i.e., (l, t) ∈ Ai+1 \ Ai. For (l, t) ∈ Ai+1, there
must be a move leading from (l, t) to a state (l′, t′) already contained in Ai (and
no spoiling move by the opponent 2). Let ((l, t), (l′, t′)) ∈ Γ3 be such a move
and π, π′ ∈ Π be the partitions with l ∈ π and l′ ∈ π′.

If one of the following two conditions were satisfied, then we would have
(π, t) ∈ bAc, in contradiction to our assumption:

(1) ((l, t), (l′, t′)) ∈ Γ3 is an active action move induced by a transition 〈l, ϕ, λ, l′〉 ∈
∆3 with t |= ϕ and t′ = t[λ := 0], and 〈π, ϕ, λ, π′〉 ∈ b∆3cΠ , and (π′, t′) ∈
bAc; or

(2) ((l, t), (l′, t′)) ∈ Γ3 is a passive wait move with l′ = l and t′ = t + d for
some d > 0, such that (π′, t′) ∈ bAc, and there is no spoiling move by the
opponent of the form ((l, t + d′), (l′′, t + d′[λ := 0])) ∈ Γ2 for 0 ≤ d′ < d
with (l′′, t + d′[λ := 0]) /∈ bAc, induced by some transition 〈l, ϕ, λ, l′′〉 ∈ ∆2
with t + d′ |= ϕ, and 〈π, ϕ, λ, π′′〉 ∈ d∆2eΠ , where π′′ ∈ Π is the part with
l′′ ∈ π′′.

Therefore, none of the two conditions is satisfied, i.e., conversely, one of the
following has to hold: either

(a) (π′, t′) /∈ bAc; or

(b) the active move ((l, t), (l′, t′)) ∈ Γ3 from (1) is not represented in the ab-
straction, i.e., 〈π, ϕ, λ, π′〉 /∈ b∆3cΠ ; or

(c) whereas the passive wait move ((l, t), (l′, t′)) ∈ Γ3 from (2) can be abstracted
to an abstract move ((π, t), (π, t + d)), there is an abstract spoiling move
present in the abstraction that has no concrete counterpart, say ((π, t +
d′), (π′′, t + d′[λ := 0])) for 0 ≤ d′ < d with (π′′, t + d′[λ := 0]) /∈ bAc,
induced by some transition 〈π, ϕ, λ, π′′〉 ∈ d∆2eΠ with t + d′ |= ϕ, where
π′′ ∈ Π is the part with l′′ ∈ π′′.

18

We may assume without loss of generality that (a) is not the culprit (i.e., that
(a) is not satisfied), since if (a) were satisfied, we could replace (π, t) in our

argument by (π′, t′) and prove that (l′, t′) /∈ b̂Ac, but (l′, t′) ∈ Attr(G). Note that
this assumption is justified by the fact that in the worst case we only have to
make finitely many such replacements of (π, t) by (π′, t′), since (l, t) ∈ Ai+1 \Ai,
but (l′, t′) ∈ Ai, and i is finite. So, either (b) or (c) holds.

If (b) holds, fix l, t, ϕ, λ, l′, and π as above, and letR := {l2 ∈ π | 〈l2, ϕ, λ, l′〉 ∈
∆3}. Then R 6= ∅, since l ∈ R, and R (π, since if we had R = π, then we
could conclude that 〈π, ϕ, λ, π′〉 ∈ b∆3cΠ , in contradiction to (b). Moreover,
〈π, ϕ, λ, π′〉 ∈ d∆3eΠ \ b∆3cΠ , and ∀l2 ∈ R ∩ π : ∃l′ ∈ π′ : 〈l2, ϕ, λ, l′〉 ∈ ∆3
by the definition of R, and t ∈ JϕK, (π, t) /∈ bAc and (π′, t[λ := 0]) ∈ bAc.
In this case, R satisfies part (1) of the statement of the definition of effective
interpolants.

Otherwise, if (c) holds, fix l, t, ϕ, λ, l′′, d′, and π as above, and let R :=
{l2 ∈ π | 〈l2, ϕ, λ, l′′〉 ∈ ∆2}. Then R 6= ∅, since l ∈ R, and R (π, since if we
had R = π, then we could conclude that 〈π, ϕ, λ, π′′〉 ∈ b∆2cΠ , which is false.
Moreover, 〈π, ϕ, λ, π′′〉 ∈ d∆2eΠ \ b∆2cΠ , and ∀l2 ∈ π : ∃l′′ ∈ π′ : 〈l2, ϕ, λ, l′′〉 ∈
∆2 ⇒ l2 ∈ R by the definition of R, and t ∈ JϕK and (π′′, t + d′[λ := 0]) /∈ bAc.
In this case, R satisfies part (2) of the statement of the definition of effective
interpolants.

In both cases (b) and (c), we can find a set R ⊆ L that satisfies (1) or (2)
in the definition of effective interpolants, which concludes the existence proof of
such a set R. ut

D Proof of Lemma 4

Lemma 4. If R ⊆ L is an effective interpolant, then Π ≺ Π|R.

Proof. Since R is an effective interpolant, there must be at least one π ∈ Π
such that ∅ (π ∩ R (π, hence π1 = π ∩ R 6= ∅ and π2 = π \ R 6= ∅. By
definition of refinement, since π1 6= ∅ and π2 6= ∅, π is replaced by π1 and π2
and other locations π′ other than π may or may not be split by R, and hence,
Π ≺ Π|R. ut

E Proof of Lemma 5

Lemma 5. Let R ⊆ L, bAc = Attr(bGcΠ), and bA′c = Attr(bGcΠ|R), where bAc
is the starting point for computing bA′c.
If b̂Ac (‘bA′c, then R is an effective interpolant.

Proof. For a TGA G = (L, I,∆,X,G), let Π be a location partition of L, R ⊆ L
be a set of locations, Π ′ = Π|R be the refined partition. Let bAc = Attr(bGcΠ)

and bA′c = Attr(bGcΠ′) with b̂Ac (‘bA′c. Furthermore, we assume that bAc is a
starting point for computing bA′c, i.e.,

b̂Ac (b̂Ac ∪¤�PreEnf(A∗) ⊆‘bA′c,
19

where A∗ is the (unique) projection of bAc to Π ′×R, i.e., Â∗ = b̂Ac, and PreEnf
is the enforceable predecessor operator defined over bGcΠ′ . We prove that R is
an effective interpolant.
We distinguish between active and delay predecessors:

PreEnfa(Y) = {(π′1, t) ∈ Π ′ ×R | ∃π′2, ϕ, λ : 〈π′1, ϕ, λ, π′2〉 ∈ b∆3cΠ′

∧ t |= ϕ ∧ (π′2, t[λ := 0]) ∈ Y };
PreEnfd(Y) = PreEnf(Y) \ PreEnfa(Y).

Assume ¤�PreEnfa(A∗)\b̂Ac 6= ∅. By definition of that assumption, we deduce that
there is a transition 〈π′1, ϕ, λ, π′2〉 ∈ b∆3cΠ′ such that there is a t ∈ JϕK such
that there are states (π′2, t[λ := 0]) ∈ bA′c and (π′1, t) ∈ bA′c, but (π, t) /∈ bAc,
for the part π ∈ Π with π ⊇ π′1. We assume wlog. π′2 ∈ Π and π′2 ∈ Π ′.
From (π, t) /∈ bAc follows that there is no transition 〈π, ϕ, λ, π′2〉 ∈ b∆3cΠ .
Thus, 〈π, ϕ, λ, π′2〉 ∈ d∆3eΠ \b∆3cΠ , and by definition of d·e and b·c, we deduce
∅ (π′1 (π. We conclude that π′1 fulfills all (1)-requirements for an effective
interpolant.

Assume ¤�PreEnfd(A∗) \ b̂Ac 6= ∅. By definition of that assumption, we deduce
that for a delay d > 0, there are states (π′, t + d) ∈ bA′c, (π′, t) ∈ bA′c, and
(π, t + d) ∈ bAc but (π, t) /∈ bAc, for the part π ∈ Π with π ⊇ π′. Hence, by
definition of PreEnf, there is a spoiling transition 〈π, ϕ, λ, π2〉 ∈ d∆2eΠ such
that there is a t′ = t + d′, for a d′ < d, with t′ ∈ JϕK such that there is a
state (π2, t

′[λ := 0]) ∈ bAc. We assume wlog. π2 ∈ Π and π2 ∈ Π ′. From
(π′, t) ∈ bA′c follows that there is no transition 〈π′, ϕ, λ, π2〉 ∈ d∆2eΠ′ . Thus,
〈π, ϕ, λ, π2〉 ∈ d∆2eΠ \ b∆2cΠ , and by definition of d·e and b·c, we deduce
∅ (π′ (π. We conclude that π′ fulfills all (2)-requirements for an effective
interpolant. ut

F Proof of Theorem 2

Theorem 2. The presented abstraction refinement loop always terminates and
yields a sound winning strategy for one of the players upon termination.

Proof. In this proof, we only cover the case of constructing a sequence of under-
approximations. For over-approximations, note that Def. 1 as well as Lemma 3
can easily be dualized such that Def. 1 also covers shrinking attractor over-
approximations, and that Lemma 3 guarantees the existence of an effective in-

terpolant if Attr(G) (¤�Attr(dGeΠ) as well.
First, we show termination of the refinement loop. In a loop cycle i, from

Lemma 3 follows that there always exists an effective interpolant Ri since as
long as no termination criterion is satisfied the attractor approximations do not

yet have full precision, i.e., ¤�Attr(bGcΠi) (Attr(G) and Attr(G) (¤�Attr(dGeΠi),

where Πi is the current partition. Wlog., we assume ¤�Attr(bGcΠi
) (Attr(G). From

Lemma 4 follows that, since Ri is an effective interpolant, Πi ≺ Πi+1 = Πi|Ri,

20

hence |Πi| < |Πi+1|. On the other hand, every partition of L is coarser or

equal to ‹Π, which is finite since L is finite. Hence, every partition ultimately
converges to ‹Π in a finite number of refinement steps. From Lemma 2 follows
that if Πn = ‹Π, for a finite n ∈ IN0, the under- and over-approximations of the
attractor coincide with the precise attractor. In this case, exactly one of the two
termination conditions is trivially true.

Second, upon termination, Lemma 2 immediately implies the soundness of
the computed attractor approximations, and hence, the soundness of the result
of the algorithm. ut

21

