
Using the Context-enhanced Additive Heuristic for
Temporal and Numeric Planning

Patrick Eyerich and Robert Mattmüller and Gabriele Röger
University of Freiburg, Germany

{eyerich,mattmuel,roeger}@informatik.uni-freiburg.de

Abstract

Planning systems for real-world applications need the abil-
ity to handle concurrency and numeric fluents. Nevertheless,
the predominant approach to cope with concurrency followed
by the most successful participants in the latest International
Planning Competitions (IPC) is still to find a sequential plan
that is rescheduled in a post-processing step. We present
Temporal Fast Downward (TFD), a planning system for tem-
poral problems that is capable of finding low-makespan plans
by performing a heuristic search in a temporal search space.
We show how the context-enhanced additive heuristic can be
successfully used for temporal planning and how it can be ex-
tended to numeric fluents. TFD often produces plans of high
quality and, evaluated according to the rating scheme of the
last IPC, outperforms all state-of-the-art temporal planning
systems.

Introduction

In contrast to classical planning, which takes only causal de-
pendencies between actions into account, temporal planning
also covers temporal dependencies and admits plans with
concurrent durative actions. Another natural step towards
real-world applications is the introduction of numeric re-
sources. Since the aspects of planning (which actions should
be executed) and scheduling (when should they be executed)
can, under certain conditions, be considered as independent
problems and consequently be tackled at different stages of
the overall planning process, a straightforward approach to
temporal planning is to separate the planning and schedul-
ing phases. This approach is taken by SGPlan (Hsu and
Wah 2008), the winner of the IPC 2006 and 2008 tempo-
ral tracks. Basically, SGPlan partitions a planning problem
by parallel decomposition into loosely coupled subproblems
and solves them using a variant of the well-known planning
system Metric-FF (Hoffmann 2003). Only then, scheduling
takes place.

Alternative approaches that integrate the planning and
scheduling aspects more tightly can lead to a shorter make-
span, because they also consider plans that cannot be re-
scheduled into sequential solutions: One such planning sys-
tem is LPG (Gerevini, Saetti, and Serina 2008) which is
based on local search and planning graphs. The search space
of LPG consists of “action graphs”, which are subgraphs
of the planning graph representing partial plans. A heuris-

tic is used to estimate the “search cost” and the “execution
cost” of conditions. Crikey (Coles et al. 2009) links plan-
ning and scheduling algorithms into a planner which is ca-
pable of solving many problems with required concurrency
(Cushing et al. 2007). Alternatively, one can build domain-
independent heuristic forward chaining planners that can
handle durative actions and numeric variables. Both TFD
and Sapa (Do and Kambhampati 2003) follow this approach.
While TFD and Sapa have much in common, the main dif-
ference lies in the heuristic: Sapa utilizes a temporal version
of planning graphs first introduced in TGP (Smith and Weld
1999) to compute heuristic values of time-stamped states.

We show how the context-enhanced additive heuristic
(Helmert and Geffner 2008) can be successfully adapted to
temporal and numeric planning. The overall performance
of the whole system turns out to be superior to the state of
the art. Especially the quality of the generated plans is very
high. On top of that, we are able to find plans requiring some
limited form of concurrency.

The rest of this paper is structured as follows: After in-
troducing the temporal planning formalism and the search,
we briefly present the original context-enhanced additive
heuristic. The following section answers the question how
this heuristic can be used for temporal and numeric plan-
ning, followed by a presentation of the experimental results.
We close with a discussion and an outlook on future work.

Temporal Planning Tasks

We start with the introduction of our running example, de-
picted in Fig. 1. The figure shows four locations ℓ0 through
ℓ3 (the labels djk at the edges represent the distances be-
tween the locations). Two gardening robots r1 and r2, both
initially located at ℓ0, have to water flowers fj at locations
ℓj that have current water levels hj and that need to be wa-
tered until levels nj are reached (j = 1, 2, 3). Location ℓ0 is
equipped with an infinite water reservoir where the robots’
water tanks can be refilled. Both tanks have capacities of
ci = 150 units, i = 1, 2, and are initially empty (wi = 0).

The actions available to the robots are depicted below.
The operators have start conditions (top left of the action
bar) that must be satisfied at the beginning of the execution
and some have persistent conditions (above the action bar)
that must be satisfied during the execution (on an open inter-
val). This example does not contain end conditions, but in

ℓ0ℓ1ℓ2 ℓ3
d01 = 70d12 = 40 d03 = 100

h1 = 10
n1 = 100

f1

h2 = 20
n2 = 70

f2

h3 = 13
n3 = 80

f3

w1 = w2 = 0
c1 = c2 = 150

r1, r2

reservoir

Figure 1: Gardening robots example.

general they are possible as well. Actions can have start (at
the bottom left) and end effects (bottom right).

• (walk ri ℓj ℓk): Walking from one location to an ad-
jacent one, with duration djk.

(walk ri ℓj ℓk) [djk]

(connected ℓj ℓk)

(at ri ℓj)

(not (at ri ℓj)) (at ri ℓk)

• (water ri ℓj fk): Watering a flower at a certain
location, with duration nk − hk.

(water ri ℓj fk) [nk − hk]

(at ri ℓj)

(in fk ℓj)

wi ≥ nk − hk

(at ri ℓj)

hk := nk

wi − = (nk − hk)

• (refill ri ℓj): Refilling the water tank, with dura-
tion ci − wi.

(refill ri ℓj) [ci − wi]

(at ri ℓj)

(has-reservoir ℓj)

(at ri ℓj)

wi := ci

One possible concurrent plan for the gardening problem
is given in Fig. 2.

For our approach, we do not use the PDDL formulations
of the planning instances directly, but automatically trans-
late them to a new formalism that we call temporal numeric
SAS+ and which is based on SAS+(Bäckström and Nebel
1995) and Helmert’s finite-domain representation (2009),
respectively. The main differences from PDDL are the use
of multi-valued state variables and the handling of logical
dependencies and arithmetic subterms via axioms. The val-
ues of these numeric variables are set directly by the ac-
tions or, in the case of compound expressions, are deter-
mined by newly introduced numeric axioms. Comparisons
between numeric expressions are translated to logical vari-
ables whose values are determined by comparison axioms.
Formally, we can define a temporal numeric SAS+ planning
task as a tuple Π = 〈V , s0, s⋆,A,O〉 with the following
components:

V is a set of state variables v, partitioned into a set Vl

of logical variables with finite domains Dv and a set of nu-
meric variables Vn with domains Dn = R ∪ {⊥} (⊥ for
undefined). A subset Vc ⊆ Vl of the logical variables is
distinguished as comparison variables with possible values
false, true, and ⊥. State variables are partitioned into fluents

The condition holds iff
w1 − (n1 − h1) ≥ 0.

aux 1 = n1 − h1

aux 2 = w1 − aux 1

aux 3 = (aux2 ≥ 0) n1 h1

aux1w1

aux2

aux3

0

≥

−

−

Figure 3: Visualization of numeric and comparison axioms.

(affected by operators) and derived variables (computed by
evaluating axioms). Each derived logical variable v has a
default value def(v) ∈ Dv . The initial state s0 is given by a
variable assignment (a state) over all fluents in V and the set
of goal states is defined by a partial state s⋆ over the logical
variables. A partial state s′ is a state restricted to a subset of
the fluents. We write dom(s′) for the subset of V on which
s′ is defined. Analogously to the Boolean setting, we some-
times identify such variable mappings with the set of atoms
v = w that they make true. For an atom x we write var(x)
to denote the variable associated with x.
A = An ∪̇ Ac ∪̇ Al is the set of axioms. An is the set of

numeric axioms, each being of the form v1 = v2 ◦ v3, where
v1 is a derived numeric variable called the affected variable,
◦ ∈ {+,−, ∗, /} is the axiom operator, and v2 and v3 are
the numeric body variables. The numeric axioms induce a
numeric dependency graph Gn = 〈Vn, En〉 with edges from
v2 and v3 to v1 for each numeric axiom v1 = v2 ◦ v3. We
require that Gn is acyclic and that for each derived numeric
variable v, there is exactly one numeric axiom in An with
affected variable v.

The comparison axioms in Ac compare the values of nu-
meric variables to 0 and are of the general form v1 = v2 ⊲⊳ 0,
where the affected variable v1 is a comparison variable,
⊲⊳ ∈ {<,≤, =,≥, >} is the comparator and v2 is the body
variable. The derived value for v1 is true if s(v2) ⊲⊳ 0 and
false, otherwise. We require that for each comparison vari-
able v, there is exactly one comparison axiom in Ac with
affected variable v.

For an example of numeric and comparison axioms, see
Fig. 3, illustrating the auxiliary variables introduced in order
to represent the precondition w1 ≥ n1 − h1 of the durative
action (water r1 ℓ1 f1) from the previous example. In
order to encapsulate the evaluation of numeric (sub)terms
and comparisons, we introduce new auxiliary variables for
them. The subgraph rooted at aux 2 is (a subgraph of) the
numeric dependency graph induced by the problem. Note
that using this graph allows sharing of common subterms.
Hence, e.g., the expression n1 − h1 represented by aux 1

only has to be evaluated once in each state, although it is
used not only in the precondition of (water r1 ℓ1 f1),
but also in its effect.

Finally, Al contains the logical axioms, which are of the
form c → v = w, where v is a derived logical variable.
If the condition c, which is a partial variable assignment
over Vl, is satisfied, the axiom triggers and the affected vari-
able v is assigned the derived value w. If no axiom affect-
ing the variable triggers, the variable is assigned its default

(refill r1 ℓ0)

150

(walk r1 ℓ0 ℓ1)

70

(water r1 ℓ1 f1)

90

(walk r1 ℓ1 ℓ2)

40

(water r1 ℓ2 f2)

50

(refill r2 ℓ0)

150

(walk r2 ℓ0 ℓ3)

100

(water r2 ℓ3 f3)

67

t = 0 t = 400 + 5ǫ

Figure 2: Plan for the gardening robots problem, with actions separated by ǫ > 0, and durations written above the actions.

value. We require that Al can be stratified. Arithmetic op-
erations or comparisons involving the undefined value ⊥ al-
ways yield ⊥ as the derived value of the affected variable.

When axioms are evaluated, the numeric axioms have
to be considered first. Traversing the numeric dependency
graph “bottom-up” (starting from the nodes with in-degree
0, which hold numeric fluents), we can assign the correct
value to each numeric variable. Subsequently, the compar-
ison variables can be assigned their values in the obvious
way. Last, the logical axioms are evaluated layer by layer,
with one fixpoint iteration per layer. We call the resulting
assignment for all variables in V an extended state in con-
trast to a normal state that fixes only the values of the fluent
variables.
O is a finite set of durative actions. An action 〈C ,E , δ〉

consists of a triple C = 〈C⊢,C↔,C⊣〉 of partial variable as-
signments over Vl (called its start, persistent, and end con-
dition, respectively), a tuple E = 〈E⊢,E⊣〉 of start and end
effects and a duration variable δ ∈ Vn. E⊢ and E⊣ are fi-
nite sets of conditional effects 〈c, e〉. The effect condition
c = 〈c⊢, c↔, c⊣〉 is defined analogously to the operator con-
dition C. Since in real world applications (and in the bench-
mark domains of the planning competition) conditional start
effects do not depend on persistent or end conditions, we re-
quire for these effects that c↔ = c⊣ = ∅. The simple effect
e is either a logical effect of the form v = w or a numeric
effect of the form v ◦ v′, where v, v′ ∈ Vn and ◦ is one of
the operators +=, −=, ∗=, /=, and :=.

We have made several requirements in this definition (e.g.
Gn acyclic, Al stratifiable). Notice, that all these are sat-
isfied naturally when translating from temporal PDDL. The
temporal numeric SAS+formalism captures all of PDDL 2.1
level 3 (Fox and Long 2003) except for duration inequalities
and metrics (but could easily be extended by these features).

A plan for a temporal planning task is a collection of du-
rative actions, each annotated with a start time point and a
duration. It must be executable in the intuitive sense, re-
specting the action conditions and the so-called no-moving-
targets restriction (Fox and Long 2003) that demands that
there are no two actions that simultaneously make use of a
value if one of the two is accessing the value to update it.
Additionally, the state reached by the plan must satisfy the
goal condition.

Search

To solve the planning tasks, i.e., to find plans, preferably
of low makespan, we use a search method similar to that
used in Sapa (Do and Kambhampati 2003). More precisely,

we perform a heuristic search in the space of time-stamped
states, where the two types of search steps are the insertion
of a durative action at the current time point and the advance-
ment of the current time by a certain increment.

A time-stamped state S = 〈t, s,E ,C↔,C⊣〉 consists of
a time stamp t ≥ 0, an extended state s, a set E of sched-
uled effects, and two sets C↔ and C⊣ of persistent and end
conditions. A scheduled effect 〈∆t, c↔, c⊣, e〉 consists of
the remaining time ∆t ≥ 0 (until the instant when the ef-
fect triggers), persistent and end effect conditions c↔ and
c⊣ over Vl, and a simple effect e. The conditions in C↔ and
C⊣ are annotated with time increments ∆t ≥ 0 and have to
hold until instant t + ∆t (exclusively) for persistent condi-
tions and at instant t + ∆t for end conditions.

We say that a condition holds in a time-stamped state iff it
holds in the corresponding extended state. A time-stamped
state S is consistent iff all unexpired persistent conditions
and all end conditions whose due time has just been reached
hold in S. The application of a set of scheduled effects
to an extended state s results in the extended state s′ ob-
tained from s by accordingly updating all fluents affected by
a scheduled effect that triggers in s, and leaving the values
of other fluents unaltered. Derived variables are evaluated
in s′ as usual after the fluents have been assigned their new
values.

A cleaned-up time-stamped state is obtained from a con-
sistent time-stamped state by applying all those scheduled
effects whose due time has been reached to the extended
state, and then dropping all scheduled effects and persistent
conditions with reached due time. The temporal progres-
sion of a cleaned-up time-stamped state S is S, if no more
scheduled effects or conditions remain in S. Otherwise, let
∆t be the minimal time increment of all scheduled effects
and conditions in S. Then the temporal progression of S
is like S, except that the time-stamp is incremented by ∆t,
all time increments of scheduled conditions and effects are
decremented by ∆t, and scheduled effects with violated per-
sistent conditions are removed.

The repeated progression of S is the sequence of time-
stamped states that starts with S and is built up by repeatedly
generating the temporal progression of the cleaned-up ver-
sion of the preceding state in the sequence. A time-stamped
state S can be consistently progressed if its repeated pro-
gression only contains consistent time-stamped states and if
for any two successive states Si and Si+1 in the repeated
progression, their intermediate state that is like Si except for
having a time-stamp that is strictly between those of Si and
Si+1, is consistent as well (this is needed to check persistent

conditions).

We can apply a durative action op in S by applying all
start effects (including a subsequent axiom evaluation) and
adding its end effects as scheduled effects and its persistent
and end conditions to C↔ and C⊣ respectively, using the op-
erator duration as ∆t. We say that an operator op is applica-
ble in a time-stamped state S iff its start-condition holds in
S and its application results in a time-stamped state S ′ that
can be consistently progressed.

The search starts at time point 0 from the extended ini-
tial state and without any scheduled effects or conditions.
The successors of a time-stamped state are all those time-
stamped states that can be obtained by either inserting an
applicable durative action at the current time point or by
computing the temporal progression of the current state. In
order to satisfy the no-moving-targets rule, small time incre-
ments of ǫ > 0 are inserted after each action addition to a
time-stamped state.

We perform an A∗ search, always expanding the time-
stamped state S = 〈t, s,E ,C↔,C⊣〉 from the open list that
minimizes f(S) = t + h(S). Additionally, we use the de-
ferred evaluation and preferred operator techniques known
from the Fast Downward planning system (Helmert 2006).
Since we use duplicate elimination, we never consider a state
that differs from an already expanded state only in having a
larger time stamp.

We return a plan as soon as a time-stamped state is
reached that satisfies the goal and where no more scheduled
conditions or effects remain. In our experiments, we use an
any-time version, where the planner does not terminate upon
finding a plan, but rather keeps searching for better plans and
returns them in order of increasing quality.

Temporal (In)completeness

Note that our search space allows us to find plans for certain
problems with required concurrency (Cushing et al. 2007).
Consider, e.g., a problem where we want to mend a fuse
(the goal is that (mended f) is true). This can only be
achieved using the action (mend-fuse f m), which re-
quires the predicate (light m), which is initially false,
to be true across the whole execution of (mend-fuse f

m) (including the end points of the action). The only ac-
tion setting (light m) to true (with its start effect) is
(light-match m). However, the same action also has
an end effect setting (light m) back to false. Therefore,
in every plan for this problem, the action (mend-fuse f)

must start after the start of the action (light-match m)

and finish before the end of (light-match m). A possi-
ble plan – as generated by our planner – is depicted in Fig. 4.

LPG-td and SGPlan cannot find a plan for this problem,
since no sequential plan exists. Sapa also cannot solve the
problem, since it does not consider any instant between the
start and end point of (light-match m) for starting a
new action. The only planners mentioned in this paper
which are able to cope with such a problem are Crikey and
TFD. We find a plan, since we add time increments of ǫ > 0
after each action insertion.

(light-match m)

(light m)

(light m) (not (light m))

(mend-fuse f m)

(light m) (light m) (light m)

(mended f)

Figure 4: Plan for problem with required concurrency.

Context-enhanced Additive Heuristic

For guiding the search, we use a variant of the (inadmis-
sible) context-enhanced additive heuristic extended to cope
with numeric variables and durative actions. In order to ex-
plain our modifications, it is necessary to briefly introduce
the “original” heuristic. We borrow the terminology and
definitions from the original paper of Helmert and Geffner
(Helmert and Geffner 2008). Hence, readers who are famil-
iar with this work can safely skip this section.

The context-enhanced additive heuristic is defined for se-
quential multi-valued planning tasks which are tuples Π =
〈V, s0, s⋆, O〉 where V is a set of logical (fluent) variables,
s0 is a state over V characterizing the initial situation, s⋆ is
a partial state characterizing the goal situations, and O is a
set of operators mapping one state into a possibly different
state.

The difference to temporal numeric SAS+ is the absence
of axioms and numeric aspects and a different definition of
operators: An operator in the sequential setting is a set of
effects (or rules) of the form v = w′, z → v = w, where z
is a partial state, v is a variable, and w and w′ are values in
Dv . Such an effect means that if the current state s complies
with z and s maps variable v to w′, then the successor state
s′, resulting from the application of the operator, maps v to
value w (while all mappings that are not changed by any
effect of the operator stay the same). We sometimes write
o : v = w′, z → v = w to make clear that the rule is an
effect of operator o.

Given a state s and an atom v = w, we use the notation
s[v = w] to denote the state that is like s except for variable
v, which it maps to w. Similarly, we write s[s′] where s′

is a partial variable assignment to denote the state that is
like s′ for the variables in dom(s′), and like s for all other
variables.

The context-enhanced heuristic hcea is defined as

hcea(s)
def
=

∑

x∈s⋆

hcea(x|xs), (1)

where xs is the atom that refers to var(x) in state s and
hcea(x|xs) estimates the costs of changing the value of
var(x) from the value it has in s to the one required in s⋆.

The context-enhanced additive heuristic makes the under-
lying assumption that for rules o : v = w′, z → v = w,
the condition v = w′ is achieved first, and the conditions
in z are evaluated in the resulting state s. This leads to the

following equation:

hcea(x|x′)
def
=

0 if x = x′

min
o:x′′,z→x

(

1 + hcea(x′′|x′)

+
∑

xi∈z

hcea(xi|x
′′
i)

)

if x 6= x′

(2)
In the nontrivial case, the first summand, 1, captures the cost
of applying the minimizing operator o (assuming a unit-cost
model), the second estimates the cost of achieving x′′ from
x′, and the third one the cost of making all other conditions
z of the rule true. In this third term, atom x′′

i is the atom as-
sociated with var(xi) in the state that results from achieving
x′′ from x′. This state is denoted by s(x′′|x′) and is obtained
from

s(x′′|x′)
def
=

{

s[x′] if x′′ = x′

s(x′′′|x′)[z′][x′′, y1, . . . , yn] if x′′ 6= x′

(3)

where x′′′ is the atom for which o : x′′′, z′ → x′′ is the
rule that yields the minimum in Eq. 2, and y1, . . . , yn are
the heads of all rules that must trigger simultaneously with
this rule (i.e., o : x′′′, z′i → yi for some z′i ⊆ z′ for all
i = 1, . . . , n, for the same operator o). In other words, if
o : x′′′, z′ → x′′ is the best (cost-minimizing) achiever for
atom x′′ from x′ according to Eq. 2, then before applying
operator o atom x′′′ must be true. The state resulting from
achieving x′′′ from x′ is (recursively) obtained as s(x′′′|x′).
Since all conditions of o : x′′′, z′ → x′′ must be true before
o can be applied, we can update these values and obtain state
s(x′′′|x′)[z′]. After applying operator o, not only is atom x′′

true but also the heads of all other rules that trigger simulta-
neously. Hence, the resulting state, also capturing all “side
effects” of operator o, is s(x′′′|x′)[z′][x′′, y1, . . . , yn].

Making the Heuristic Useful for Temporal and

Numeric Planning

In order to use the context-enhanced additive heuristic for
temporal and numeric planning, we need to answer two ma-
jor questions:

1. How to transform durative actions into operators that are
suitable for the heuristic computation?

2. How to deal with the numeric aspects of the planning
task?

Our answer to the first question is the introduction of sev-
eral types of so-called instant actions, which the next section
presents in detail. The subsequent section explains the han-
dling of the numeric aspects which is basically estimating
the costs of changing the values of comparison variables.

Instant Actions

Since the context-enhanced additive heuristic is defined in
terms of non-temporal operators, we emulate the temporal
task by non-temporal instant actions. These newly intro-
duced instant actions can be classified into several different
groups.

The first group, which we call compressed actions, con-
tains all instant actions that we derive by compressing a
complete durative action. For this purpose, we use a trans-
formation that is – at least similarly – also used by several
other planning systems, e.g., by MIPS and LPG (Edelkamp
2003; Gerevini, Saetti, and Serina 2008): When compress-
ing a condition triple, e.g. 〈c⊢, c↔, c⊣〉, we remove all those
persistent and end conditions that are made true by the as-
sociated operator op itself, i.e., all persistent and end condi-
tions v = w for which op contains a start effect 〈c, v = w〉
(ignoring the effect condition c). The triple is then com-
pressed by building a single set of all remaining conditions.
Note that by removing the distinction between start, persis-
tent, and end conditions, the condition loses the property of
being a (partial) variable mapping. Now, there can be atoms
v = w and v = w′, associated with the same variable. We
transform a durative action by compressing all conditions
(of actions and effects) and collecting all start and end ef-
fects except for those logical start effects that are overridden
by an end effect. Notice that we keep all numeric start and
end effects even if they share the affected variable.

In addition, we move all action conditions to the effect
conditions and make sure that the affected variable of each
logical effect also appears in a condition of the effect. If the
condition c of a compressed logical effect e = 〈c, v = w〉
does not contain a condition on v, we introduce new effects
〈c ∪ {v = w′}, v = w〉 for each w′ ∈ Dv \ {w}. These
ideas are borrowed from Helmert and Geffner 2008 making
it possible to write the effects in the same form they use.
Using their notation, a compressed logical effect 〈z ∪ {v =
w′}, v = w〉 of instant action o is written as o : v = w′, z →
v = w. Analogously, we write compressed numeric effects
〈z, v ◦ v′〉 as o : z → v ◦ v′ (◦ being among +=, −=, ∗=,
/=, and :=). In addition, we assign each instant action o
a cost cost(o) which is either a real number or a numeric
variable. The cost of a compressed instant action o that is
derived from a durative action op = 〈C, E, δ〉 is simply the
duration variable of that action, i.e., cost(o) = δ.

One problem with compressing a complete durative ac-
tion is that we hide the state that is reached during the ex-
ecution of the action (after applying the start effects) from
the heuristic. For this reason, we introduce a second group
of instant actions, called start actions, that cover only the
start effects of a durative action. Nevertheless, we have to
reflect the cost that results from applying the complete dura-
tive action. Hence, start actions include all conditions (start,
persistent and end condition) that the compressed action also
preserves, and the cost of a start action is the duration of the
original durative operator. The only difference from the re-
spective compressed action is that we do not add end effects.

Note that there is no reason to use analogous end actions.
Whenever the heuristic calculation needs to use an end ef-
fect of a durative action, it can use the compressed action
instead. An exception is the case where the associated dura-
tive action is already running in the evaluated time-stamped
state S. In this case we can consider the conditions of the du-
rative action as already satisfied and estimate the cost of the
transition as the remaining time of the running action. Thus,
our third group of instant actions are the so-called waiting

actions: For each scheduled effect 〈∆t, c↔, c⊣, e〉 in S, we
add a waiting action o with cost(o) = ∆t and effect → e. If
e is a logical effect v = w, we add conditions on v = w′ as
above.

The last group of instant actions is derived from the logi-
cal axioms. Such an axiom z → v = w results in an instant
action o with cost(o) = 0 and effects {v = w′, z → v =
w | w′ ∈ Dv \ {w}}.

After answering the question of how to transform durative
actions into instant actions, we still have to address the sec-
ond question – how we can deal with the numeric aspects of
the planning task.

Numeric Aspects

Eq. 2 shows that the heuristic estimate is based on the costs
of making the atoms in the goal specification true, taking
into consideration the costs that arise from making the nec-
essary actions applicable. Since numeric variables do not
directly occur in conditions or in the goal specification but
only influence them via comparison variables, it is sufficient
to estimate the cost of changing the values of these compar-
ison variables.

Consider an unsatisfied condition v = w with v ∈ Vc

being a comparison variable and w being true or false, and
let v = v′ ⊲⊳ 0 be the associated comparison axiom. The
numeric variable v′ represents an arithmetic expression over
a set F(v) of numeric fluents. Our aim is to identify those
instant actions that modify these fluents in such a way that
v = w becomes true, or which at least move v′ closer to the
desired value.

The set F(v) can easily be determined from the nu-
meric dependency graph Gn by collecting the ancestors of
v′ with in-degree 0 (for example, in Fig. 3, F(aux 3) =
{w1, n1, h1}). Based on this, we determine the set of rules
(from the instant actions) that influence these variables, i.e.,
the set influencing(v) = {o : z → v1 ◦ v2 | v1 ∈
F(v)}. In the next step, we want to choose those rules from
influencing(v) that have a positive impact on the atom.

If we want to make an expression v < 0 or v ≤ 0 true, we
are interested in instant actions decreasing v, and if we want
to make v > 0 or v ≥ 0 true, we need to find instant actions
increasing v. The converse holds if we want to make such
an expression false. This leads to the following definition.

Let w ∈ {true, false} be the current value of a compari-
son variable v whose value should be changed. We define

⊲⊳w =

< if ⊲⊳ ∈ {<,≤, =} and w = false or

if ⊲⊳ ∈ {>,≥} and w = true,

> if ⊲⊳ ∈ {>,≥} and w = false or

if ⊲⊳ ∈ {<,≤, =} and w = true.

(4)

A rule o : z → v1 ◦ v2 in influencing(v) is promising to
change value w of variable v in an extended state s (with
v = v′ ⊲⊳ 0 being the associated comparison axiom), if

s[v1 ◦ v2](v
′) ⊲⊳w s(v′) if ⊲⊳ ∈ {<,≤,≥, >}, or

|s[v1 ◦ v2](v
′)| ⊲⊳w |s(v′)| otherwise,

where s[v1 ◦ v2] is the state that equals s except for the up-
date v1 ◦ v2 and a subsequent axiom evaluation. We refer to
the set of promising rules as prom(v = w, s).

Using this definition, we can extend Eq. 2 for costs and
comparison variables as follows:1

hcea(x|x′)
def
=

0 if x = x′

min
o:x′′,z→x

(

c(s′′) +

hcea(x′′|x′) +
∑

xi∈z

hcea(xi|x
′′
i)

) if x 6= x′,
var(x) 6∈ Vc

min
o:z→v ◦ v′

∈

prom(x′,s′)

(

c(s′) +

∑

xi∈z

hcea(xi|x
′
i)

) if x 6= x′,
var(x) ∈ Vc

(5)
where c(s) = cost(o) if cost(o) ∈ R and c(s) = s(cost(o)),
otherwise. The states s′ and s′′ are the state corresponding
to x′, and the state after reaching x′′ from x′ (cf. Eq. 3)2,
respectively.

Then, the temporal variant of the heuristic is defined as

hcea(S)
def
=

∑

x∈s⋆

hcea(x|xs). (6)

Note that, whereas the objective of the search is finding
plans with a low parallel makespan, the heuristic does not
take concurrency into account and merely sums over the du-
rations of relevant actions, thereby effectively providing an
estimate of the makespan of a sequential plan (or, identi-
fying durations with costs, the total cost of a plan). We be-
lieve that these estimates are still informative, since typically
there is a positive correlation between parallel and sequential
makespans. The inadmissibility of the heuristic arises from
different sources, specifically from the inherent sequential-
ity of the heuristic, from possible double counts of action du-
rations in the form of start and compressed instant actions,
and from the inadmissibility of the non-temporal context-
enhanced additive heuristic.

To illustrate how the heuristic computation works, we will
have another look at the gardening robots example intro-
duced in Fig. 1.

Illustrating Example

Consider the simplified problem in which only f2 needs to
be watered (and f1 and f3 can be left alone) and there is only
one robot r1. Accordingly, the goal is to satisfy h2−n2 = 0.
We start with the comparison variable corresponding to this
equality being false, and collect all those instant actions that
modify either of the two compared fluents in such a way that
we can hope to get h2 and n2 closer to each other. Since n2

cannot be modified, a transition will be promising iff it mod-
ifies h2 and moves it closer to n2. There is only one such
transition – specifically, the compressed action correspond-
ing to the durative action (water r1 ℓ2 f2). The cost

1Since only logical variables can occur in conditions of instant
actions, hcea is only defined for atoms x with var(x) ∈ Vl.

2Note that if the side effects yi include updates of numeric flu-
ents, the variables representing numeric terms containing these flu-
ents are updated accordingly.

of this transition is the duration of the corresponding action,
i.e., the difference n2 − h2 = 50 in the seed state. Besides
the satisfied condition (in f2 ℓ2), the transition still has
two unsatisfied conditions (at r1 ℓ2) and w1 ≥ n2 − h2.
For the first one, we have to investigate the domain transi-
tion graph of the location variable of r1. Clearly, we have
to perform two successive walk transitions to get to ℓ2: the
(compressed) action (walk r1 ℓ1 ℓ2) has a single unsat-
isfied precondition, (at r1 ℓ1), which can be achieved by
(walk r1 ℓ0 ℓ1). The latter action does not have any un-
satisfied preconditions in the seed state. We can take the two
transitions at costs of 40 and 70, respectively. Having com-
pleted the first precondition of the watering action, we still
have to take care of the second one, i.e., w1 ≥ n2 − h2.
The promising transitions here are those increasing h2 or
w1. When we look for the cost-minimizing among these, it
turns out to be cheapest to increase w1 using the transition
(refill r1 ℓ0) at a cost of 150. In total, this gives us an
estimate of 150 + 70 + 40 + 50 = 310, which in this case
is actually a perfect estimate. While the underlying plan in
this example is sequential, the heuristic computation would
work analogously if estimating a concurrent plan.

Experimental Results
To evaluate the performance of our planner, we compared it
to several state-of-the-art planning systems: SGPlan 6 (Hsu
and Wah 2008) won the temporal satisficing track in IPC
2008. Since, surprisingly, a simple planning system – im-
plemented by the IPC 2008 organizers to serve as a baseline
– performed better than any of the competitors, we used it
for evaluation as well. This system, in the following called
BasePlanner, ignores all temporal aspects and solves the task
sequentially using Metric-FF (Hoffmann 2003). The result-
ing plan is then rescheduled in a post-processing step. We
mentioned that our search space is very similar to the one of
Sapa (Do and Kambhampati 2003), so we also included this
system into our comparisons. Crikey (Coles et al. 2009) fea-
tures the ability to solve many temporally expressive plan-
ning tasks. The last planner we compared to is the suc-
cessful LPG-td (Gerevini, Saetti, and Serina 2008) (we used
the anytime variant of LPG by enabling its ’quality’ mode).
To implement the approach described in this paper, we ex-
tended the Fast Downward planning system (Helmert 2006).

The benchmark set we used for the evaluation consists
of all deterministic temporal domains of IPC 2008. All ex-
periments were conducted with a 2 GB memory limit and a
30 minutes time limit on a computer with a 2.66 GHz Intel
Xeon CPU.

Table 1 shows the quality of the planning systems mea-
sured with the evaluation scheme of IPC 2008 that comprises
both plan length and coverage: Suppose the shortest known
plan for a task has makespan Q∗. Then each planner gets
a score of Q∗/Q for each solved instance, where Q is the
makespan of the resulting plan. The domain score is the
sum of all the instance scores, assigning 0 to unsolved tasks.
For some of the domains, the benchmark set contains dif-
ferent formulations (namely for elevators and openstacks).
In these cases the total score of a planner includes only the
score of the formulation on which it performs better.

The table shows that TFD performs better than all the
other evaluated systems. Surprisingly, the older LPG-td still
outperforms SGPlan 6 and BasePlanner, the official and un-
official winner of the last IPC. The other three planners are
clearly behind.

We mentioned that the IPC score is based on plan quality
as well as coverage. Observing that TFD solves compara-
tively few instances of the modeltrain, parcprinter and the
transport domain, in the following we examine more closely
where the strengths of our approach lie. For this purpose,
we compare TFD to each of the other systems only on those
tasks that are solved by both planners, thus focusing on the
quality of the generated plans. The results are shown in Ta-
ble 2.

The entries in this table state the average makespan ratios
of the generated plans. A value greater than 1.0 indicates
that the solutions found by TFD are better than the corre-
sponding solutions found by the competing system. The
last row is the sum of this ratios weighted by the number
of compared plans per domain. The table shows that our
approach clearly outperforms all other systems in terms of
plan quality: the plans produced by the other systems are on
average between 31% (LPG-td) and 60% (SGPlan 6) longer
than those of TFD.

Discussion and Future Work

We have seen that the heuristic described in this paper works
remarkably well on the IPC 2008 benchmark set.

Still, there is room for improvement: In addition to the
problem relaxation used in the non-temporal variant of the
context-enhanced additive heuristic, we relax the temporal
features of planning problems as well. It appears to be
promising to investigate whether some of these relaxations
could be removed, leading to a more precise state evaluation,
without increasing the computational effort too much.

One relaxation is not to distinguish between start and
end conditions in instant actions. Recall that the original
context-enhanced additive heuristic has the underlying as-
sumption that first the condition on the affected variable is
made true and only then the other conditions. It appears
promising to adapt this assumption and to update the state
after satisfying the start conditions before the costs for the
end conditions are determined.

Another issue of the current version of the heuristic is
its inherent sequentiality. We can take concurrency into
account by either extracting relaxed sequential plans and
rescheduling them using a Simple Temporal Network (STN)
based approach, or by performing a greedy scheduling of
subplans during the computation of the relaxed plan.

The last issue is that we exploit a certain property of the
benchmark domains: actions that have a positive impact on
a numeric resource usually are sufficient to already satisfy
all conditions on this resource (e.g., it is not necessary to re-
fuel twice in order to have enough fuel for a certain driving
action). If this is not the case, our heuristic underestimates
the cost of making a condition true, because it considers ef-
fects only qualitatively. This could be resolved by a more
in-depth analysis of the actual quantitative changes.

Domain BasePlanner Crikey 3 LPG-td Sapa SGPlan 6 TFD

Crewplanning 16.19 22.59 12.76 — 22.44 28.72
Elevators 18.38 2.60 22.75 5.64 15.09 19.38
Modeltrain 11.92 — — — 11.11 0.96
Openstacks 18.14 20.67 14.35 25.90 12.49 26.66
Parcprinter 13.84 8.58 18.20 5.25 11.00 9.10
Pegsol 24.35 18.30 25.81 18.98 15.39 27.57
Sokoban 15.52 7.03 11.95 0.00 8.73 13.00
Transport 5.50 2.83 11.57 1.91 7.46 6.91
Woodworking 12.14 11.96 26.37 9.36 10.44 16.04

Overall 135.97 94.55 143.76 67.02 114.15 148.34

Table 1: Overall results using the evalu-
ation scheme of IPC 2008. A dash indi-
cates that the planner produced errors or
gave wrong results for that domain.

Domain BasePlanner Crikey 3 LPG-td Sapa SGPlan 6

Crewplanning (18) 1.14 (29) 1.38 (13) 1.01 — (28) 1.39
Elevators (17) 1.58 (10) 3.00 (23) 1.11 (12) 2.26 (17) 1.84
Modeltrain (1) 1.05 — — — (1) 1.01
Openstacks (30) 1.55 (30) 1.33 (30) 2.66 (30) 1.04 (30) 2.44
Parcprinter (13) 1.37 (13) 1.34 (12) 0.70 (5) 1.12 (13) 1.32
Pegsol (28) 1.19 (28) 1.60 (28) 1.12 (24) 1.28 (18) 1.21
Sokoban (13) 1.29 (9) 1.50 (12) 1.50 — (9) 1.22
Transport (7) 1.18 (6) 1.79 (7) 0.75 (3) 1.54 (10) 1.37
Woodworking (27) 1.42 (27) 1.44 (28) 0.66 (20) 1.37 (21) 1.29

Overall (154) 1.36 (152) 1.55 (153) 1.31 (94) 1.35 (147) 1.60

Table 2: Pairwise plan quality comparisons to
TFD on the instances that are solved by both ap-
proaches (their number is stated in parentheses).
Scores greater than 1 indicate that TFD gener-
ates shorter plans.

One feature that distinguishes Crikey 3 and TFD from the
BasePlanner, LPG-td, Sapa and SGPlan is their ability to
cope – to a higher (Crikey 3) or lower (TFD) degree – with
problems requiring plans with overlapping actions (see Fig-
ure 4), whereas the other planners only work on strictly tem-
porally simple (Cushing et al. 2007) domains.

Conclusion

We presented an adaptation of the context-enhanced addi-
tive heuristic to temporal and numeric planning. Whereas
the implemented search algorithm over the space of time-
stamped states is similar to the algorithms used by other
temporal planning systems, this particular heuristic has not
been studied in the context of temporal planning before. We
show that, as in the classical case, the heuristic often returns
estimates that are sufficiently accurate to steer the search to-
wards the goal rather fast. Even though we still have some
ideas how the accuracy of the heuristic can be further im-
proved (interaction of subproblems and concurrency of ac-
tions can be handled more accurately), the current version of
TFD already outperforms all state-of-the-art temporal plan-
ning systems. It does not only find plans for a large number
of problems, but in particular plans of higher quality com-
pared to plans returned by other temporal planning systems.

Acknowledgments

This work was supported by the German Research Coun-
cil (DFG) by DFG grant NE 623/10-2 and as part of the
Transregional Collaborative Research Center “Automatic
Verification and Analysis of Complex Systems” (SFB/TR
14 AVACS, http://www.avacs.org/), by the German Federal
Ministry of Education and Research (BMBF) under grant
no. 01IME01-ALU (DESIRE), and by the EU as part of the
Integrated Project CogX (FP7-ICT-2xo15181-CogX).

References
Bäckström, C., and Nebel, B. 1995. Complexity results for SAS+

planning. Computational Intelligence 11(4):625–655.

Coles, A.; Fox, M.; Halsey, K.; Long, D.; and Smith, A.
2009. Managing concurrency in temporal planning using planner-
scheduler interaction. AIJ 173(1):1–44.

Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S. 2007.
When is temporal planning really temporal? In Proc. IJCAI 2007,
1852–1859.

Do, M. B., and Kambhampati, S. 2003. Sapa: A multi-objective
metric temporal planner. JAIR 20:155–194.

Edelkamp, S. 2003. Taming numbers and duration in the model
checking integrated planning system. JAIR 20:195–238.

Fox, M., and Long, D. 2003. PDDL2.1: An extension of PDDL
for expressing temporal planning domains. JAIR 20:61–124.

Gerevini, A.; Saetti, A.; and Serina, I. 2008. An approach to
efficient planning with numerical fluents and multi-criteria plan
quality. AIJ 172(8-9):899–944.

Helmert, M., and Geffner, H. 2008. Unifying the causal graph
and additive heuristics. In Proc. ICAPS 2008, 140–147.

Helmert, M. 2006. The Fast Downward planning system. JAIR
26:191–246.

Helmert, M. 2009. Concise finite-domain representations for
PDDL planning tasks. AIJ 173:503–535.

Hoffmann, J. 2003. The Metric-FF planning system: Translating
ignoring delete lists to numeric state variables. JAIR 20:291–341.

Hsu, C.-W., and Wah, B. W. 2008. The SGPlan planning
system in IPC-6. http://manip.crhc.uiuc.edu/Wah/

papers/C168/C168.pdf.

Smith, D. E., and Weld, D. S. 1999. Temporal planning with
mutual exclusion reasoning. In Proc. IJCAI 1999, 326–337.

