
Abstractions for Planning with State-Dependent Action Costs

Florian Geißer
University of Freiburg, Germany

geisserf@informatik.uni-freiburg.de

Thomas Keller
University of Basel, Switzerland

tho.keller@unibas.ch

Robert Mattmüller
University of Freiburg, Germany

mattmuel@informatik.uni-freiburg.de

Abstract

Extending the classical planning formalism with state-
dependent action costs (SDAC) allows an up to exponentially
more compact task encoding. Recent work proposed to use
edge-valued multi-valued decision diagrams (EVMDDs) to
represent cost functions, which allows to automatically detect
and exhibit structure in cost functions and to make heuristic
estimators accurately reflect SDAC. However, so far only the
inadmissible additive heuristic hadd has been considered in
this context. In this paper, we define informative admissi-
ble abstraction heuristics which enable optimal planning with
SDAC. We discuss how abstract cost values can be extracted
from EVMDDs that represent concrete cost functions with-
out adjusting them to the selected abstraction. Our theoretical
analysis shows that this is efficiently possible for abstractions
that are Cartesian or coarser. We adapt the counterexample-
guided abstraction refinement approach to derive such ab-
stractions. An empirical evaluation of the resulting heuristic
shows that highly accurate values can be computed quickly.

Introduction
Planning with state-dependent action costs (SDAC) not only
leads to a more elegant encoding of planning tasks, but also
to an up to exponentially more compact and computationally
manageable representation than what one would get by mul-
tiplying out all possible valuations of variables on which an
action cost function depends. Breaking down higher-level
actions with SDAC into low-level micro actions with con-
stant costs is not always possible in a straightforward way,
and if done naı̈vely, it only moves the exponential blow-up
from the representation to the search space. Nevertheless,
although PDDL supports SDAC (Fox and Long 2003), we
are not aware of any planner able to handle action costs that
differ between states. One reason is that, while supporting
SDAC is trivial in plain forward search, correctly reflecting
them in a goal-distance heuristic is not.

However, there has been some recent work on the topic.
Ivankovic et al. (2014) circumvent the problem of dealing
with SDAC in the heuristic computation by assuming that
all actions have minimal cost over all states. They then
iteratively compute a relaxed plan, check if the costs co-
incide, if necessary refine the corresponding action’s cost

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

function by splitting the action in two parts, and repeat in
this manner until no violation is left. Geißer, Keller, and
Mattmüller (2015) propose a variant of the additive heuris-
tic hadd (Bonet, Loerincs, and Geffner 1997) that is able to
deal with SDAC. Their approach differs from the method
of Ivankovic et al. in that they directly deal with SDAC in
the heuristic computation, which is achieved by representing
action cost functions as edge-valued multi-valued decision
diagrams (EVMDDs) (Lai, Pedram, and Vrudhula 1996;
Ciardo and Siminiceanu 2002). EVMDDs allow to detect,
exhibit and exploit additive structure present in action cost
functions. An important property of EVMDDs is that they
are edge-valued, i.e., the function values they represent are
additively distributed along the paths corresponding to the
input. As their edges correspond to facts (variable-value
pairs), this means that they localize and attribute partial costs
to facts responsible for them, in general conditionally on
other facts branched over earlier in the EVMDD. In this pa-
per, we build on the idea of encoding cost functions with
EVMDDs, and use them to compute abstraction heuristics.
Unlike hadd, our heuristic is admissible and can hence be
used for optimal planning with SDAC.

We show that, as long as the abstraction under consider-
ation is Cartesian (Ball, Podelski, and Rajamani 2001), the
attribution of partial costs to facts can be exploited when
computing abstract action cost values. This is essentially
done by distinguishing facts consistent with the current ab-
stract state from those inconsistent with it during the evalu-
ation of the EVMDD. The same technique also works for
all abstractions that are coarser than Cartesian, including
projection or pattern-database abstractions (Culberson and
Schaeffer 1998; Edelkamp 2001) and domain abstractions
(Hernádvölgyi and Holte 2000). Importantly, our approach
allows the computation of abstract costs without adaptation
of the concrete cost function to the abstraction.

Our contribution is the following: We define abstract
planning tasks with SDAC and discuss the specifics of the
evaluation of cost functions in abstract states. We show that
EVMDDs allow an efficient computation of abstract cost
values if the abstraction is Cartesian, and discuss how ab-
stractions can be used to find an optimal plan for the concrete
problem. We generalize the counterexample-guided abstrac-
tion refinement (CEGAR) approach for classical planning
(Seipp and Helmert 2013) to planning with SDAC and show

empirically that our implementation of the heuristic outper-
forms other approaches in terms of heuristic accuracy.

Background
Planning with State-Dependent Action Costs
We consider planning tasks with SDAC, and base our work
on the formalism of Geißer, Keller, and Mattmüller (2015).
Definition 1. A planning task with SDAC is a tuple Π =
(V, A, s0, s?, (ca)a∈A) consisting of the following compo-
nents: V = {v1, . . . , vn} is a finite set of state variables,
each with an associated finite domain Dv = {0, . . . , |Dv| −
1}. A fact is a pair (v, d), where v ∈ V and d ∈ Dv , and
a partial variable assignment s over V is a consistent set
of facts. If s assigns a value to each v ∈ V , s is called
a state. Let S denote the set of states of Π. A is a set of
actions, where an action is a pair a = 〈pre, eff〉 of partial
variable assignments, called preconditions and effects. The
state s0 ∈ S is called the initial state, and the partial state
s? specifies the goal condition. Each action a ∈ A has an
associated cost function ca : S → N that assigns the ap-
plication cost of a to all states where a is applicable, and
arbitrary values to all other states.

For states s, we use function notation s(v) = d and set no-
tation (v, d) ∈ s interchangeably. Each cost function ca can
be thought of as a function ca : D1×· · ·×Dka → N, where
v1, . . . , vka are the variables ca depends upon, which we
also call the support supp(a) of ca, and Dj , j = 1, . . . , ka,
are their domains. Let pvars(a) be the set of variables men-
tioned in the precondition of action a. Throughout the pa-
per, we assume without loss of generality that supp(a) ∩
pvars(a) = ∅. The semantics of planning tasks are as usual:
an action a is applicable in state s iff pre ⊆ s. Applying ac-
tion a to s yields the state s′ with s′(v) = eff(v) where eff(v)
is defined, and s′(v) = s(v) otherwise. We write s[a] for s′.
A state s is a goal state iff s? ⊆ s. We denote the set of goal
states by S?. Let π = 〈a0, . . . , an−1〉 be a sequence of ac-
tions from A. We call π applicable in s0 if there exist states
s1, . . . , sn such that ai is applicable in si and si+1 = si[ai]
for all i = 0, . . . , n − 1. We call π a plan for Π if it is
applicable in s0 and if sn ∈ S?. The cost of plan π is the
sum of action costs along the induced state sequence, i.e.,
cost(π) =

∑n−1
i=0 cai(si).

Edge-Valued Decision Diagrams
Each action cost function ca : D1×· · ·×Dn → N over vari-
ables V = {v1, . . . , vn} with domains Dv = {0, . . . , |Dv| −
1} can be encoded as an EVMDD.
Definition 2. An EVMDD over V is a tuple E = 〈κ, f〉,
where κ ∈ Z is a constant and f is a directed acyclic graph
consisting of two types of nodes: (i) there is a single ter-
minal node denoted by 0. (ii) A nonterminal node v is a tu-
ple (v, χ0, . . . , χk, w0, . . . , wk) where v ∈ V is a variable,
k = |Dv|−1, children χ0, . . . , χk are terminal or nontermi-
nal nodes of E , and w0, . . . , wk ∈ Z s.t. mini=0,...,k wi = 0
are the weights assigned to the edges to the children.

By f we also refer to the root node of E . Edges of E
between parent and child nodes are implicit in the definition

of the nonterminal nodes of E . The weight of an edge from
v to child χi is wi. The following definition specifies the
arithmetic function denoted by a given EVMDD.

Definition 3. An EVMDD E = 〈κ, f〉 denotes the arith-
metic function κ + f where f is the function denoted by
f . The terminal node 0 denotes the constant function 0, and
(v, χ0, . . . , χk, w0, . . . , wk) denotes the arithmetic function
over S given by f(s) = fs(v)(s) + ws(v), where fs(v) is the
arithmetic function denoted by child χs(v). We write E(s)
for κ+ f(s).

In the graphical representation of an EVMDD E = 〈κ, f〉,
f is represented by a rooted directed acyclic graph and κ
by a dangling incoming edge to the root node of f . The
terminal node is depicted by a rectangular node labeled 0.
Edge labels d are written next to the edges, edge weights wd
in boxes on the edges. For fixed variable orders, reduced
and ordered EVMDDs are unique (Ciardo and Siminiceanu
2002). For suitable variable orders, the encoding size of an
EVMDD Ea for cost function ca is often polynomial in the
number of variables in supp(a).

Example 1. (From Geißer, Keller, and Mattmüller, 2015.)
Consider the action cost function ca = xy2 + z + 2 with

x

y

z

0

2

0

0
0

1

4

2

1

1

0

0

1

1

0

0

Dx = Dz = {0, 1} and Dy =
{0, 1, 2}. The figure on the left de-
picts an EVMDD for ca and vari-
able order x, y, z. To see how the
EVMDD encodes the cost function
ca, consider the state swith s(x) =
1, s(y) = 2 and s(z) = 0. Travers-
ing the corresponding edges in the
EVMDD from top to bottom and
adding up the edge weights, we ar-
rive at the resulting value 6, which
is exactly ca(s).

Let Ea be an EVMDD encoding ca. For a state s, ca(s)
can be read from Ea as the path cost of the unique EVMDD
path corresponding to s, Ea(s).

Abstractions for SDAC Tasks
A planning task with SDAC Π induces a transition system
T = (S,L, T, s0, S?) with state space S, transition labels
L, transition relation T , initial state s0 and goal states S? in
the usual way, with one additional feature: besides source
state s, target state t and transition label a, transitions in T
also carry a weight n ∈ N, which is determined by s and a
as n = ca(s). Moreover, given a transition system T , an ab-
stract state space Sα, and a surjective abstraction mapping
α : S → Sα, we call T α = (Sα, L, Tα, sα0 , S

α
?) the abstract

transition system induced by T and α. It is obtained from
T by collapsing concrete states mapped to the same abstract
state into one, preserving initial and goal states, and includ-
ing an abstract transition in Tα iff there is a concrete tran-
sition inducing it. We define the weight of an abstract tran-
sition between abstract states ŝ and t̂ with transition label a
to be the minimal weight of any concrete transition starting
in any state s with α(s) = ŝ labeled with action a. Notice

that, according to this definition, the cost of an abstract tran-
sition only depends on the action label and the source state,
not on the target state. This is in accordance with action cost
functions only depending on the source, but not the target
state, and will be necessary below (cf. Definition 5) when
we define an abstract cost function independently of an ab-
stract transition system, and later when we compute abstract
costs efficiently using EVMDDs that only have access to the
source state, not the target state. It is, however, easily possi-
ble to generalize our formalism to cost functions that depend
on source and target state, for instance to encode general re-
ward functions of Markov Decision Processes.

In the following, for convenience, we identify abstract
states ŝ with the sets of concrete states {s ∈ S |α(s) = ŝ}
that are abstracted to them, and use notation like α(s) = ŝ
and s ∈ ŝ interchangeably. From now on, we focus our at-
tention on so-called Cartesian abstractions that, unlike, e.g.,
projection abstractions, may keep some, but not necessarily
all, information about a variable by partitioning its domain
into values consistent with abstract state ŝ and values incon-
sistent with ŝ. The definition follows Seipp and Helmert
(2013).
Definition 4. A set of states ŝ is called Cartesian if it is of the
formD1×· · ·×Dn, whereDi ⊆ Di for all i = 1, . . . , n. An
abstraction (mapping) is called Cartesian if all its abstract
states are Cartesian sets. We call domain values d ∈ Di

consistent with ŝ, and also refer to Di as ŝ(vi). We assume
that Di 6= ∅ for all i = 1, . . . , n.

We will see examples for Cartesian and non-Cartesian ab-
stractions in the following sections. Given a concrete transi-
tion system T (encoded compactly as a planning task Π) and
abstraction mapping α, computing the abstract state space,
label set and initial state is trivial. For the Cartesian abstrac-
tions we are interested in, determining the set of abstract
goal states is also easy, as is checking whether action pre-
conditions are satisfied. Since computing abstract state suc-
cessors is also cheap in a Cartesian setting, we can efficiently
determine the set of abstract transitions, except for the cor-
rect abstract transition weights. Their efficient computation
is the main challenge left, because their weights may not
only depend on information that is kept in the abstraction,
but also on information that has been abstracted away.

Abstract Cost Computation
Syntactic Cost Minimization
To address the challenge of efficiently computing abstract
transition weights, we first define abstract cost functions that
syntactically minimize over corresponding concrete costs.
Definition 5. Let Π = (V, A, s0, s?, (ca)a∈A) be a plan-
ning task with SDAC with state space S and α : S → Sα

a surjective abstraction mapping. For each a ∈ A, we de-
fine the abstract cost function cαa : Sα → N as cαa (ŝ) =
mins∈S:α(s)=ŝ ca(s) for abstract states ŝ ∈ Sα.

It is easy to show that defining cαa as above means the
same as requiring that abstract transition weights be mini-
mal among all weights of transitions from states abstracted
to ŝ with the same action label a. In particular, this means

that, when we want to compute abstract transition weights,
we do not have to minimize over all (exponentially many)
concrete transitions responsible for that weight, but that it is
sufficient to evaluate the abstract cost function cαa (ŝ). No-
tice that in Definition 5, we do not need to restrict the min-
imization to states s where action a is applicable, since we
assume that ca(s) is independent of all variables occurring
in the precondition of a. Given a plan π, we can now also
define the abstract cost of π with α as the sum of the ac-
tion costs along the induced abstract state sequence, i.e.
costα(π) =

∑n−1
i=0 c

α
ai(ŝi)

Global EVMDD-Based Cost Minimization
We discuss how to efficiently determine cαa (ŝ) next. First,
we give an example that shows that in principle, we need
to minimize over exponentially many concrete states in the
definition of cαa (ŝ). Then, we show why for Cartesian ab-
stractions, this is unproblematic.

Example 2. Consider a planning task Π with propositional
variables v0, . . . , vn−1, x, initial state s0 with all variables
zero, goal condition x = 1, unit-cost actions for tog-
gling any of the variables vi (separately), and an action
a? without precondition that sets x to 1 at cost ca? =

2n −∑n−1
i=0 2ivi. Consider further the projection abstrac-

tion to the variable x that maps all states s with s(x) = 0
to the abstract state ¬x, and all states s with s(x) = 1 to
the abstract state x. Then, apart from irrelevant self-loops
induced by the toggling actions, the abstract state space has
one nontrivial transition from ¬x to x labeled with action
a?. The question is which cost to assign to it. Applying a? in
the concrete initial state costs 2n, but with each vi toggled
to 1, a? becomes cheaper, with a remaining minimum cost
of 1 if all vi are toggled to 1. There are exponentially many
concrete states (hidden in just one abstract state ¬x) and
exponentially many different cost values to consider when
determining the cost of a single abstract transition.

As a starting point for our study of the interaction between
abstract states and EVMDDs, similar to Definition 3, we de-
fine the arithmetic function over abstract states encoded by
an EVMDD. Recall that concrete states correspond to paths
in EVMDDs. Since we defined abstract action costs by min-
imizing over concrete states (cf. Definition 5), in order to
mirror this definition on the level of EVMDDs, we define
the value that an EVMDD assigns to an abstract state ŝ as
the minimum value over all paths corresponding to ŝ.

Definition 6. Let E be an EVMDD and α an abstraction
mapping. The arithmetic function in terms of global mini-
mization over abstract states wrt. α is given by Eα,G(ŝ) =
mins∈S:α(s)=ŝ E(s) which amounts to minimizing over all
paths in E that correspond to a concrete state s ∈ S with
α(s) = ŝ.

It immediately follows from Definitions 5 and 6 that
EVMDDs for concrete cost functions also correctly encode
abstract cost values, since the minimizations over concrete
states s abstracted to ŝ in both definitions are in an exact
correspondence.

Proposition 1. Let ca be the cost function of some action a,
let Ea be an EVMDD encoding ca, and let ŝ be an abstract
state wrt. some abstraction mapping α. Then Eα,Ga (ŝ) =
cαa (ŝ).

In the next section, we will see that this global minimiza-
tion over paths can be replaced by a local minimization over
edges if the abstraction is Cartesian. Therefore, computing
Eα,Ga (ŝ) is cheap if ŝ is a Cartesian state, whereas it remains
potentially expensive, otherwise.

Local EVMDD-Based Cost Minimization
If the abstraction we face is not Cartesian, essentially, the
problem that may arise is this: two or more variables can
be independent in the cost function, giving rise to a com-
pact EVMDD, but dependent in the abstraction; then, con-
sidering the independent parts of the EVMDD separately is
not enough to compute f(ŝ). Rather, paths have to be in-
vestigated in the EVMDD globally. The following example
illustrates the issue.
Example 3. Consider an action a with cost function ca =
x + y + 1 for two variables x and y with Dx = Dy =

x

y

0

1

0

0

1

1

2

2

2

2

1

1

0

0

{0, 1, 2}. The EVMDD for ca and vari-
able order x, y is depicted to the left. Con-
sider further a (non-Cartesian) abstrac-
tion mapping α that maps all states s with
s(x) = s(y) to the abstract state x = y
and all states s with s(x) 6= s(y) to the
abstract state x 6= y. We write 00 for the
concrete state s with s(x) = s(y) = 0,
and correspondingly for all other concrete
states. Since ca(00) = 1, ca(11) = 3,
and ca(22) = 5, we have cαa (x = y) =

min{1, 3, 5} = 1. In the same vein, we can compute the ab-
stract cost for x 6= y as cαa (x 6= y) = 2. Clearly, all EVMDD
edges are consistent with x 6= y in the sense that there exists
a concrete state s abstracted to x 6= y that satisfies the edge
constraint (which requires s to assign to the tested variable
the value corresponding to the edge). When evaluating the
cost in x 6= y, there is nothing that would make us prefer the
x = 0, x = 1, or x = 2 edge over any of the other two
edges. The same holds for the y = 0, y = 1, and y = 2
edges, whose consistency with x 6= y is conditional on which
of the three x-edges we traversed. Therefore, we need to
consider all paths in the EVMDD that are consistent with
x 6= y. Here, there are six such paths, and in general, there
are exponentially many of them in the size of the EVMDD.
Independently minimizing over all incoming edges that are
consistent with x 6= y at all decision points (and the termi-
nal node) would lead to a cost value that underestimates the
true value cαa (x 6= y) = 2, namely to 1.

As long as we only care about admissibility of the result-
ing abstraction heuristic, underestimating costs by indepen-
dent minimization is sound, but we lose informativeness.

Let us now assume that α is a Cartesian abstraction map-
ping and that ŝ is an abstract state wrt. α. By definition
of Cartesian abstractions, for each variable v, an abstract
state ŝ is consistent with a subset of values ŝ(v). In terms

of EVMDDs, this means that at a branching point for vari-
able v, state ŝ “enables” a subset of the outgoing arcs, ex-
actly those corresponding to values in ŝ(v). Therefore, an
EVMDD evaluation of ŝ that does a single top-sort traversal
of E , locally minimizing over all enabled arcs in all decision
nodes, correctly computes Eα,G(ŝ).

Example 4. Consider again action a from Example 3, and
the abstraction mapping α such that

α(s) =

ŝ1 if s(x) ∈ {0, 1} and s(y) ∈ {0, 1},
ŝ2 if s(x) ∈ {0, 1} and s(y) = 2,

ŝ3 if s(x) = 2 and s(y) = 0, and
ŝ4 if s(x) = 2 and s(y) ∈ {1, 2}.

Clearly, this abstraction is Cartesian, and it can be illus-
trated by the following figure.

ŝ1

ŝ2

ŝ3 ŝ4

00 01 02

10 11 12

20 21 22

x = 0

x = 1

x = 2

y = 0 y = 1 y = 2

Notice that the domain values in the respective sets Di need
not be contiguous. They only happen to be in this example.
The figure below shows the EVMDD for ca (for variable or-
der x, y) with edges consistent with ŝ1, ŝ2, ŝ3, and ŝ4, re-
spectively, highlighted in red/bold, from left to right. We can
now evaluate this EVMDD by locally minimizing over high-
lighted incoming arcs.

x

y

0

1

0

0

1

1

2

2

2

2

1

1

0

0

x

y

0

1

0

0

1

1

2

2

2

2

1

1

0

0

x

y

0

1

0

0

1

1

2

2

2

2

1

1

0

0

x

y

0

1

0

0

1

1

2

2

2

2

1

1

0

0

Close inspection of the four copies of the EVMDD reveals
that each of the nine possible paths is highlighted in exactly
one of them. Moreover, local minimization leads to values of
1, 3, 3, and 4, respectively (from left to right). Again, these
are exactly the abstract cost values cαa (ŝi), i = 1, . . . , 4, as
desired.

Notice that the abstraction from Example 2 is also Carte-
sian and allows a local minimization as described above,
leading to the correct minimum cαa (¬x) = 1.

We now turn to formally stating the previous observa-
tions. First, we define the arithmetic function for an abstract
state in terms of local minimization.

Definition 7. Let α be a Cartesian abstraction mapping and
E an EVMDD as in Definition 3. The arithmetic function in
terms of local minimization over abstract states wrt. α is
given by fα(ŝ) = mind∈ŝ(v)(f

α
d (ŝ) + wd), where fαd is the

arithmetic function denoted by child χd. We write Eα,L(ŝ)
for κ+ fα(ŝ).

For Cartesian states, global minimization and local mini-
mization indeed return the same result.

Proposition 2. Let E be an EVMDD over a set of state vari-
ables V , and let ŝ be a Cartesian abstract state over a subset
of V . Then Eα,L(ŝ) = Eα,G(ŝ).

Proof. Both the definition of Eα,L(ŝ) and that of Eα,G(ŝ)
minimize EVMDD path costs over all paths correspond-
ing to concrete valuations s with α(s) = ŝ. Clearly, all
paths minimized over in Eα,G(ŝ) are also minimized over in
Eα,L(ŝ). The converse follows since ŝ is Cartesian.

Notice that this result exactly mirrors our previous result
for delete relaxations (Geißer, Keller, and Mattmüller 2015,
Theorem 1), since relaxed states are by definition Cartesian
sets. Furthermore, we can efficiently compute Eα,L(ŝ).

Proposition 3. Computation of Eα,L(ŝ) needs time linear in
the size of E .

Proof. Eα,L(ŝ) can be computed using a single top-sort
traversal of E , therefore the cost of computing Eα,L(ŝ) is
linear in the size of E .

Let us quickly summarize these results and their implica-
tions. We can efficiently perform local minimization. For
Cartesian states, it does not matter if we perform local or
global minimization. Global minimization encodes abstract
cost values. We can therefore efficiently compute abstract
cost values, which was the last piece required to efficiently
compute the abstract transition system. More formally, we
get the following corollary from Propositions 1 and 2.

Corollary 1. Let Π be a planning task with SDAC, let a be
an action from Π with cost function ca, let Ea be an EVMDD
representing ca, let α be a Cartesian abstraction mapping
for Π, and let ŝ be an abstract state for mapping α. Then
cαa (ŝ) = Eα,L(ŝ).

We want to point out that we can, in principle, make
sure that each abstraction is Cartesian by merging flu-
ents (van den Briel, Kambhampati, and Vossen 2007). Con-
sider Example 3. After merging x and y, the abstraction is
Cartesian. If an abstraction is “k-almost Cartesian”, mean-
ing that we need to merge groups of at most k successive flu-
ents in the EVMDD variable order, we also have “k-almost
local” minimizations in the unmerged problem. This gives
us a similar tractability result as for Cartesian abstractions,
now for fixed parameter k.

Abstract Plans
Let us now turn our attention to the relation between a plan-
ning task with SDAC and its abstraction. On the one hand,
we are interested in the use of an abstraction to compute a
heuristic estimate to guide search in the concrete task. On

the other hand, we want to directly compute optimal plans
for the concrete task with the help of the abstraction.

Abstraction heuristics are based on the idea of considering
an abstract version of the state space, computing exact goal
distances there, and using those goal distances as heuristic
estimates in the original problem. In classical planning, ab-
straction heuristics based on single abstractions are, by con-
struction, guaranteed to be admissible. It is easy to see that
this property also holds in the presence of SDAC, as still all
concrete paths from T are preserved as abstract paths in T α,
and concrete plans remain plans in the abstraction. More-
over, since transition costs never increase in the abstraction,
path and plan costs never increase, either. In other words,
abstraction heuristics based on our abstractions are admissi-
ble estimates for the concrete planning task with SDAC.

Proposition 4. Let T and T α be a transition system and
its abstraction, and let π be an optimal abstract plan from
an abstract state ŝ ∈ Sα. Then costα(π) is an admissible
heuristic estimate for all s ∈ ŝ.

We want to remark that all goal distances can be com-
puted with a single sweep over the abstract state space. The
second property we are interested in concerns the question
when an optimal abstract plan is also an optimal concrete
plan. Given an abstract plan π = a0, . . . , an−1 with induced
state sequence ŝ0, . . . , ŝn for planning task Π and abstrac-
tion mapping α, we call π concretizable if π is a plan for Π
with induced state sequence s0, . . . , sn such that α(si) = ŝi
for i = 0, . . . , n. In the absence of state-dependent action
costs, an optimal abstract plan that is concretizable to a plan
in the concrete task is also optimal in the concrete setting.
If an abstraction is created to provide heuristic values and
it turns out that an optimal abstract plan is concretizable,
then this solves the concrete task without performing any
search in the concrete transition system. Seipp and Helmert
(2013), for instance, exploit this property in their empiri-
cal evaluation, where they report the number of instances
that are solved already during the refinement phase of their
counterexample-guided abstraction refinement algorithm.

In planning tasks with SDAC, an optimal plan in the ab-
straction is not necessarily optimal in the concrete planning
task, because the approximation of action costs as the min-
imum over all concrete states that are contained within an
abstract state is an additional source of error. Unlike poten-
tial errors due to the abstraction it is not resolved when a
plan is found that can be applied in both transition systems.

Example 5. Consider the abstract transition system of a
planning task with SDAC with propositional variables x and
y depicted in the following figure.

a2 : 1 a1 : 1

a1 : 1
00 10

01

11

There are the actions a1 = 〈>, x∧y〉 and a2 = 〈>,¬x∧y〉
with cost functions ca1 = 2x + 1 and ca2 = 1; initial state
s0 = 10; and goal condition x ∧ y. The figure above omits
transitions that are self-loops or start in the goal state. Since

all abstract costs are 1, the optimal abstract plan is π1 =
〈a1〉 with abstract cost costα(π1) = 1, and π1 is also a
concrete plan with cost cost(π1) = 3. However, the optimal
concrete plan is π2 = 〈a2, a1〉 with concrete and abstract
cost cost(π2) = costα(π2) = 2.

For planning tasks with SDAC, optimal abstract plans
must therefore satisfy an additional constraint to be optimal
concrete plans: we not only require that the abstract plan is
concretizable, but also that its cost is identical in both the
abstract and the concrete transition system.

Definition 8. Let α be an abstraction mapping and π an
optimal abstract plan. We call π concretizable at the same
cost if π is concretizable and costα(π) = cost(π).

As the cost of each abstract plan is a lower bound on its
concrete cost, an optimal abstract plan that is concretizable
at the same cost must be optimal in the concrete planning
task as well.

Proposition 5. Let π be an optimal abstract plan in T α that
is concretizable at the same cost. Then π is an optimal plan
in the concrete transition system T .

This will become relevant below when we generalize
counterexample guided abstraction refinement (CEGAR) to
SDAC. Besides the usual types of flaws in spurious abstract
plans, we define cost mismatch flaws that occur if a plan may
be concretizable, but not at the same cost.

Generalized CEGAR
Counterexample guided abstraction refinement is an estab-
lished method to derive Cartesian abstractions. It has been
introduced first in the model checking community (Clarke
et al. 2000), and has recently been applied to classical plan-
ning by Seipp and Helmert (2013). The algorithm maintains
an explicit abstraction which is initialized as the trivial ab-
straction with a single abstract state. The abstract transition
system is refined iteratively until a termination criterion is
met or until an optimal abstract plan that is concretizable is
found. In the former case, the resulting transition system can
be used to derive admissible heuristic estimates to guide the
search procedure, while the abstract plan is also an optimal
plan for the concrete task in the latter.

In each iteration, CEGAR aims to compute an abstract
plan. If it fails, the problem is unsolvable. Otherwise, if the
plan is not concretizable, it searches for a flaw in the con-
crete execution of that plan and refines the corresponding ab-
stract state by splitting it. Seipp and Helmert describe three
types of flaws that can be encountered: first, a concrete state
is not contained in the corresponding abstract state; second,
an action precondition is not satisfied; and third, the abstract
plan does not finish in a goal state of the concrete task.

The basic procedure of the algorithm remains untouched
even in the presence of SDAC. However, the additional con-
straint on optimal abstract plans that are also optimal con-
crete plans implies that we also have to generalize the al-
gorithm to SDAC by adding a fourth kind of flaw: a cost
mismatch flaw is encountered if the application of an ac-
tion incurs different costs in the abstract transition system

and the concrete one. In our implementation of the gen-
eralized CEGAR algorithm, if a cost mismatch flaw is en-
countered in a concrete state s under application of action
a, we split the abstract state ŝ = α(s) into two parts ŝ1
and ŝ2 by selecting a variable v randomly among all vari-
ables with (i) v ∈ supp(a), and (ii) there are d, d′ ∈ ŝ(v)
that contribute different partial costs in the evaluation of
cαa (ŝ). With d = s(v), we create ŝ1 with ŝ1(v) = {d} and
ŝ1(v′) = ŝ(v′) for all v′ 6= v, and ŝ2 with ŝ2(v) = ŝ(v)\{d}
and ŝ2(v′) = ŝ(v′) for all v′ 6= v. While the first constraint
is self-explanatory (it only makes sense to select a variable
that influences the action cost), the motivation for the second
is best illustrated with an example.

Example 6. Consider an action a with the cost function
that is encoded by the depicted EVMDD for two variables

x

y

0

0

0

0

1

1

2

2

2

2

2

1

0

0

x and y with Dx = Dy = {0, 1, 2}, and
let ŝ = {0, 1} × {1, 2} be the abstract
state that is indicated by the highlighted
edges. Both x and y satisfy condition (i),
but only x satisfies condition (ii) since both
partial costs incurred by y are 2. This
can also be observed from the costs of ap-
plying a in the contained concrete states,
which are ca(01) = ca(02) = 2 and
ca(11) = ca(12) = 3 and hence indepen-
dent of variable y.

This guarantees that generalized CEGAR only terminates
if the termination criterion is met or when an optimal ab-
stract plan is found that is concretizable at the same cost.
Hence, our version of CEGAR is a generalization of the al-
gorithm of Seipp and Helmert (2013), i.e., it behaves iden-
tically when applied to a classical planning task but is able
to deal with state-dependent action costs. Finally, we want
to clarify why the worst-case exponentiality of computing
abstract cost values is problematic in the first place if we
build the whole abstract state space explicitly anyway. This
is because the computation of abstract cost values can be
“more exponential” than the computation of the abstract
state space; since cost functions depend on variables that
get abstracted away, we have to minimize over all (partial)
states on which the function depends, not only over all ab-
stract states.

Experimental Evaluation
We evaluate our approach on domains from the benchmark
set of the last two International Probabilistic Planning Com-
petitions (IPPC), which are the only benchmarks we are
aware of that include state-dependent action costs (albeit
in the form of rewards). However, the overhead required
to adapt our abstraction heuristic to the probabilistic setting
would distract from the main purpose of this work. Hence,
we consider deterministic variants of the IPPC domains that
are modified as follows: first, we use the most-likely deter-
minization of the probabilistic task where the most likely ac-
tion outcome replaces all probabilistic effects. Second, we
transform the reward function to a non-negative cost func-
tion by setting ca(s) = Rmax

a − Ra(s), where Rmax
a is the

highest reward that is possible under application of action

a, and Ra(s) is its reward function. Third, since all bench-
mark instances are finite-horizon problems with the objec-
tive of maximizing the expected reward over a finite number
of steps, we determine a set of goal facts by computing all
states with an applicable zero-cost action.

In all domains but GAME OF LIFE, this leads to an in-
tuitive description of the goal. However, for ELEVATORS,
SYSADMIN and TAMARISK the goal either holds in the ini-
tial state or is trivial to achieve. We therefore change the
initial state in these domains in a way that the goal is max-
imally hard to achieve (i. e., passengers wait on all floors
and are in all elevators in ELEVATORS, all computers are
switched off in SYSADMIN and there is a tamarisk in each
slot in TAMARISK). In ACADEMIC ADVISING, NAVIGA-
TION, SKILL TEACHING and TRIANGLE TIREWORLD, the
initial state is already significant. Besides GAME OF LIFE,
we also omit WILDFIRE, RECON, and CROSSING TRAFFIC
in our evaluation because all instances are either unsolvable
or trivial. The last existing domain, TRAFFIC, is omitted be-
cause the set of goal states is too large for our conversion
procedure to handle in the majority of instances. This re-
sults in seven domains with ten instances each that are used
in our empirical evaluation.

Our abstraction heuristic is based on the generalized CE-
GAR approach that has been described in the previous sec-
tion. It has several important properties: following Propo-
sition 4, it computes admissible heuristic estimates; it is an
anytime heuristic in the sense that it improves with increas-
ing computation time; and it requires a precomputation step
where either a solution is found (compare to Proposition
5) or a lookup table is created, which allows low heuristic
“computation” times during search.

We compare the heuristic that is computed with CEGAR,
hcegar, with two other heuristics that support SDAC: the first
heuristic, hids, is based on iterative deepening search and is
used successfully in the PROST planner (Keller and Eyerich
2012), the winner of the last two IPPCs. In each iteration,
it returns the cost of the cheapest possible sequence of ac-
tions for the current depth and terminates when a goal state
is encountered. The hids heuristic is an anytime approach
which is often remarkably fast, since results can often be
computed based on the cached results of previous itera-
tions. It is, however, only admissible in planning tasks where
the shortest plan is also the optimal one (ACADEMIC AD-
VISING, SYSADMIN, NAVIGATION and TRIANGLE TIRE-
WORLD). The other considered heuristic is a variant of the
additive heuristic hadd that also makes use of EVMDDs to
deal with SDAC. Geißer, Keller, and Mattmüller (2015) have
recently applied it successfully to ACADEMIC ADVISING. It
is neither admissible nor anytime, though. To allow an un-
biased comparison, all three heuristics and the used search
algorithms have been implemented in the PROST planning
framework, which uses the Meddly library (Badar and Miner
2011) to generate EVMDDs.

In the first part of our evaluation, we are interested in the
anytime behaviour of hcegar and hids, i.e., we analyze em-
pirically how the heuristic accuracy evolves with increasing
computation time. We only consider the initial states in this
setup, and run both heuristics with a time limit of 30 min-

10−4 10−2 100 102 104

20

60

100

(a) ACADEMIC

10−4 10−2 100 102 104

20

60

100

140

(b) ELEVATORS

10−4 10−2 100 102 104

5

15

25

(c) NAVIGATION

10−4 10−2 100 102 104

100

300

500

700

(d) SKILL

10−4 10−2 100 102 104

200

600

1000

1400

(e) SYSADMIN

10−4 10−2 100 102 104

50

150

250

350

(f) TAMARISK

10−4 10−2 100 102 104

1000

3000

5000

(g) TRIANGLE

Optimum
CEGAR
IDS

Figure 1: Cost estimate as a function of computation time of
hcegar and hids in the hardest instances of IPPC domains

utes across all instances. Whenever the computed heuristic
estimate improves, we report the time and heuristic value.
The results for the hardest instance of each domain, which
proved to be representative over all instances, are depicted
in Figure 1, along with the cost of the optimal plan which is
derived by running A? with hcegar (apart from SYSADMIN,
which is computed manually).

It can be seen that hcegar eventually dominates in ACA-
DEMIC ADVISING, ELEVATORS, NAVIGATION, and TRI-
ANGLE TIREWORLD where it improves over hids after less
than ten seconds and solves all instances in less than a
minute. While this might seem like much for a heuristic,
one has to keep in mind that hcegar – unlike hids – performs
this computation only once initially, and merely looks up
precomputed results during search. With this in mind, the
results for SKILL TEACHING and TAMARISK also look bet-

ACAD ELEV NAV SKILL SYS TAMA TRIA

hcegar (1800s) 1.00 1.00 1.00 0.62 0.13 0.94 1.00

hcegar (10s) 1.00 1.00 0.62 0.29 0.08 0.50 0.41

hcegar (1s) 0.79 0.68 0.17 0.21 0.07 0.32 0.22

hadd 2.82 3.90 1.00 11.21 1.93 12.53 0.17

Table 1: Relative accuracy of heuristic estimates compared
to optimal costs for hcegar with varying timeouts and hadd

ter than at first glance. The final domain, SYSADMIN, is the
hardest for both heuristics. It is also the only domain with a
significant number of instances that cannot be solved within
our time limit of 30 minutes – apart from the eight unsolved
SYSADMIN instances, there are only two from the ELEVA-
TORS domain, three from SKILL TEACHING and a single
TAMARISK instance. Figure 2 shows the time that is re-
quired by the heuristics to compute optimal estimates. With
hcegar, 56 out of 70 instances are solved optimally within
the given time limit, while hids only solves 29. Moreover,
apart from some trivial instances that are solved by both ap-
proaches in less than a second, hcegar solves most instances
significantly faster than hids.

As a final remark on our first experiment, let us also point
out that we have even used CEGAR to rule out the unsolv-
able instances from the CROSSING TRAFFIC and WILDFIRE
domains (which led to their exclusion from the experiment),
which it is able to detect fairly quickly. The hids heuristic, on
the other hand, can only detect that an instance is unsolvable
if it explores the whole state space.

In our second experiment, we compare hcegar to the vari-
ant of the additive heuristic that is able to deal with state-
dependent action costs. As hadd is neither admissible nor
does it improve with increasing computation time, we com-
pare the accuracy of the heuristics relative to the perfect
heuristic. The results for the hardest instances of our evalu-
ation domains for hcegar with three different timeout settings
(1800, 10, and 1 second) and the additive heuristic are de-
picted in Table 1. If an entry is smaller than 1.0, costs are
underestimated, while values higher than 1.0 denote overes-
timations. Apart from TRIANGLE TIREWORLD (where the
delete relaxation allows the use of a single spare tire arbi-
trarily often), hadd overestimates the cost in all tasks. The
admissible CEGAR heuristic converges towards the perfect
heuristic from below. If provided with a timeout of 30 min-
utes, it clearly outperforms hadd on all domains but SYSAD-
MIN in terms of accuracy. With lower timeout, the picture is
less clear, but it is again the case that hcegar needs to be com-
puted only once while hadd is computed in every state, such
that higher precomputation times can be justified by the time
that is saved during search.

Conclusion
In this paper, we studied abstractions for planning with state-
dependent action costs. They can be used to derive admis-
sible heuristics required for optimal planning. We identi-
fied the efficient computation of abstract transition costs as
the main challenge, and showed that this challenge can be

10−4 10−3 10−2 10−1 100 101 102 103

CEGAR

10−4

10−3

10−2

10−1

100

101

102

103

ID
S

Academic Advising
Elevators
Navigation
Skill Teaching
Sysadmin
Tamarisk
Triangle Tireworld

Figure 2: Time in seconds to reach optimal cost estimates
with hcegar and hids in the considered IPPC domains

solved for abstractions that are at most as fine-grained as
Cartesian ones, but generally not for finer abstractions. The
main idea is that the independence between state variables
in Cartesian abstractions can be exploited when computing
abstract cost values based on an EVMDD encoding the con-
crete cost function.

Based on this observation we generalized CEGAR, a stan-
dard technique to come up with Cartesian abstractions, to
state-dependent action costs. Besides the usual flaws de-
tected by CEGAR in spurious solutions, we identified cost
mismatch flaws that occur if an abstract plan is already
concretizable but still too cheap. We therefore presented
a method to resolve such flaws in our generalized CE-
GAR algorithm. Our experimental evaluation on a set of
determinized IPPC benchmarks shows that our abstraction
heuristic has a higher accuracy than other heuristics that sup-
port state-dependent action costs.

Since our heuristic is admissible, it allows, for the first
time, to apply well-known standard planning techniques,
like A?, to planning tasks with state-dependent action costs.
Moreover, we think that by studying planning with state-
dependent action costs we may gain insight into classical
planning techniques which alter cost functions, as it is done,
for example, in cost partitioning.

Acknowledgments. This work was partly supported by
the DFG as part of the SFB/TR 14 AVACS and by BMBF
grant 02PJ2667 as part of the KARIS PRO project.

References
Badar, J., and Miner, A. 2011. MEDDLY: Multi-terminal
and Edge-valued Decision Diagram LibrarY. http://
meddly.sourceforge.net/. Accessed: 2015-11-22.
Ball, T.; Podelski, A.; and Rajamani, S. K. 2001. Boolean
and cartesian abstraction for model checking C programs.
In Proceedings of the 7th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems
(TACAS 2001), 268–283.
Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust
and fast action selection mechanism for planning. In Pro-
ceedings of the 14th National Conference on Artificial Intel-
ligence (AAAI 1997), 714–719.
Ciardo, G., and Siminiceanu, R. 2002. Using edge-valued
decision diagrams for symbolic generation of shortest paths.
In Proceedings of the 4th International Conference on For-
mal Methods in Computer-Aided Design (FMCAD 2002),
256–273.
Clarke, E.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H.
2000. Counterexample-guided abstraction refinement. In
Proceedings of the 12th International Conference on Com-
puter Aided Verification (CAV 2000), 154–169.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Edelkamp, S. 2001. Planning with pattern databases. In Pre-
proceedings of the 6th European Conference on Planning
(ECP 2001), 13–24.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research (JAIR) 20:61–124.
Geißer, F.; Keller, T.; and Mattmüller, R. 2015. Delete
relaxations for planning with state-dependent action costs.
In Proceedings of the 24th International Joint Conference
on Artificial Intelligence (IJCAI 2015), 1573–1579.
Hernádvölgyi, I. T., and Holte, R. C. 2000. Experiments
with automatically created memory-based heuristics. In Pro-
ceedings of the 4th International Symposium on Abstraction,
Reformulation, and Approximation (SARA 2000), 281–290.
Ivankovic, F.; Haslum, P.; Thiébaux, S.; Shivashankar, V.;
and Nau, D. S. 2014. Optimal planning with global numer-
ical state constraints. In Proceedings of the 24th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2014).
Keller, T., and Eyerich, P. 2012. PROST: Probabilistic plan-
ning based on UCT. In Proceedings of the 22nd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 119–127.
Lai, Y.-T.; Pedram, M.; and Vrudhula, S. B. K. 1996.
Formal verification using edge-valued binary decision dia-
grams. IEEE Transactions on Computers 45(2):247–255.
Seipp, J., and Helmert, M. 2013. Counterexample-guided
cartesian abstraction refinement. In Proceedings of the
23rd International Conference on Automated Planning and
Scheduling (ICAPS 2013), 347–351.
van den Briel, M.; Kambhampati, S.; and Vossen, T. 2007.
Fluent merging: A general technique to improve reach-
ability heuristics and factored planning. In Proceedings
of the ICAPS 2007 Workshop on Heuristics for Domain-
Independent Planning (HDIP 2007).

