Delete Relaxations for Planning with State-Dependent Action Costs

Florian Geißer, Thomas Keller, and Robert Mattmüller

Albert-Ludwigs-Universität Freiburg, Germany

Motivation

Cost of operator application may depend on current state:

Additive Heuristic: Example

- ► s(A) = s(B) = 0. Question: $h_s^{add}(A = 1) = ?$
- ► Action a adds fact A = 1 at cost 2 2B.
- ► Action *b* adds fact B = 1 at cost 1.

$$\operatorname{cost}(\operatorname{dish}\operatorname{washing}) = 1 \cdot | \bullet | + 2 \cdot | \Psi | + 5 \cdot | \bullet |$$

Action Cost Functions

Action $a \operatorname{costs}$

$$c_a: \mathcal{D}_1 \times \mathcal{D}_2 \times \cdots \times \mathcal{D}_k \to \mathbb{N}$$

where $D_i = \{0, ..., n_i\}$ is the domain of variable v_i on which the cost function c_a depends, i = 1, ..., k.

$$h_s^{add}(fact) = \begin{cases} 0 & \text{if } s \models fact \\ \min_{\text{achiever } a \text{ of } fact} \left[h_s^{add}(pre(a)) + C_s^a \right] & \text{otherwise,} \end{cases}$$
where $C_s^a = \min_{\hat{s} \text{ valuation of variables in } c_a} \left[c_a(\hat{s}) + h_s^{add}(\hat{s}) \right]$

Edge-Valued Multi-Valued Decision Diagrams

Test variables

on all paths.

Add inputs

for facts.

Decision diagram [Ciardo & Siminiceanu, 2002] for function

 $c_a = AB^2 + C + 2$

with $\mathcal{D}_A = \mathcal{D}_C = \{0, 1\}$, and $\mathcal{D}_B = \{0, 1, 2\}$

E.g., $c_a(1,2,0) = 2 + 0 + 4 + 0 = 6$.

Main Theoretical Result

With $h_s^{add}(fact)$ values as inputs, the output of the AND/OR graph is C_s^a .

Use of the Result

- Generate AND/OR graph.
- Embed AND/OR graph in RPG.
- **Compute generalized** h^{add} .

Experiments

ACADEMIC ADVISING domain (IPPC 2014), PROST planner [Keller & Eyerich, 2012].

Instance	2	4	6	8	10
Variables	20	30	40	50	60
Actions	11	16	21	26	31
Variables in c_a	8	8	11	10	12
AND/OR graph	26 + 33	26 + 33	35 + 45	32 + 41	38 + 49
Plan cost IDS	46.24	202.19	202.90	201.67	201.51
Plan cost h^{add}	45.80	63.41	76.15	109.02	125.52