Minimizing Necessary Observations for Nondeterministic Planning

Robert Mattmüller Manuela Ortlieb Erik Wacker

UNI FREIBURG

Research Group Foundations of Artificial Intelligence Department of Computer Science University of Freiburg, Germany

September 25th, 2014

Motivation

Example: Partially Observable BLOCKSWORLD Domain with Nondeterministic PUT-DOWN Operator

Motivation

Example: Partially Observable BLOCKSWORLD Domain with Nondeterministic PUT-DOWN Operator

Observing CLEAR predicate sufficient to find solutions.

Initial state known \Rightarrow overhead camera sufficient as a sensor.

Question: How to find minimal sets of variables sufficient for solution existence in arbitrary POND planning tasks?

Remark: Here, "solution" means strong cyclic plan:

- closed: defined for all belief states it may reach, and
- proper: no dead ends

Motivation

Theory

Practical Algorithms

Empirical Evaluation

Conclusion

Preliminaries

Formalism

Problem OBSERVEINCLMIN:

- Input: POND planning task $\Pi = \langle \mathcal{V}, B_0, B_\star, \mathcal{A}, \mathcal{W} \rangle$ with
 - state variables V
 - initial belief state B₀
 - goal description B_{*}
 - nondeterministic actions A
 - \blacksquare possibly observable variables $\mathcal{W}\subseteq\mathcal{V}$
- Output: Inclusion-minimal set of variables $\mathcal{O} \subseteq \mathcal{W}$ such that there exists a strong cyclic plan for Π observing only variables from \mathcal{O} , or NONE if no such set \mathcal{O} exists.

Motivation

Theory

Practical Algorithms

Empirical Evaluation

Conclusion

Theory Hardness Result

Theorem (Rintanen, 2004)

The strong cyclic plan existence problem for POND planning, PLANExPOND, is 2-EXPTIME-complete.

Theorem

OBSERVEINCLMIN is 2-EXPTIME-complete.

Proof.

Trivial reduction from PLANExPOND \Rightarrow OBSERVEINCLMIN 2-EXPTIME-hard.

Naive algorithm iterating over all subsets of $\ensuremath{\mathcal{W}}$

 \Rightarrow ObserveInclMin \in 2-Exptime.

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations

Motivation

Theory

Practical Algorithms

> Empirical Evaluation

Conclusion

Motivation

Theory

Practical Algorithms

Empirical Evaluation

Conclusion

Question: Can we improve over the naive algorithm from the proof?

Assumption: No obviously irrelevant variables in W. Ignore variables known in B_0 and never made unknown by any action.

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations

Baseline Algorithm

Simple Greedy Algorithm

function SIMPLEGREEDYSEARCH(Π): if Π is unsolvable then return NONE Compute some plan π for Π Let \mathcal{O} be the set of variables actually observed in π while Π still solvable with some o removed from \mathcal{O} do Remove o from \mathcal{O} return \mathcal{O}

Motivation

Theory

Practical Algorithms

Baseline Algorithm

Plan Reuse

Functional Dependencies

Empirical Evaluation

Conclusion

7/19

Theorem Function SIMPLEGREEDYSEARCH In runs in 2-Exptime, In correctly solves ObserveInclMin.

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations

Motivation

Reuse portions of plan not affected by dropping a variable.

Plan Reuse Example, $W = \{x, y\}$

Plan Reuse Example, $W = \{x, y\}$

Plan Reuse Example, $\mathcal{W} = \{x, y\}$

Plan Reuse Example, $\mathcal{W} = \{x, y\}$

Plan Reuse Example, $W = \{x, y\}$

Soundness

To eliminate variable y:

- Let π be the old plan still observing *y*.
- Identify gaps $1, \ldots, n$ in π .
- Let π_y be the reusable fragment of π .
- Let π_j , j = 1, ..., n, be the new sub-plans filling the gaps.
- Let $\pi' = \pi_y \oplus \pi_1 \oplus \cdots \oplus \pi_n$ (\oplus = function overriding).

Lemma

If π and all π_i are strong cyclic plans, then so is π' .

Proof sketch.

In π' , "last" subplan "wins". Thus, closedness and properness of π and all π_j carry over to π' .

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations

Motivation

Theory

Practical Algorithms

Baseline Algorithm

Plan Reuse Functional Dependencies

Empirical Evaluation

Conclusion

BURG

Soundness

To minimize set of observation variables:

Eliminate variables one by one, if possible.

Theorem

Plan π resulting from successive elimination of variables is strong cyclic plan.

Proof sketch.

Base case + inductive application of previous lemma.

Remarks:

- In induction, skip gaps filled/circumvented by chance when filling earlier gap.
- In elimination step, existence of π_j not guaranteed.
 Resulting π' not necessarily with inclusion minimal set O.

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations

Motivation

Theory

Practical Algorithms

Baseline Algorithm

Plan Reuse Functional Dependencies

Empirical Evaluation

Conclusion

BURG

Suboptimality

Remark:

Observation sets found with plan reuse can be suboptimal.

Example: Let Π with

- Propositional variables $\mathcal{V} = \{a, b, c\}$,
- Initial belief state $B_0 = \overline{a}\overline{b}\overline{c}$,
- Goal belief state $B_{\star} = c$,
- Observable variables $W = \{b\}$,
- Actions $A = \{a_1, a_2, a_3, a_4\}$, where

$$\begin{array}{l} a_1 = \langle \overline{a} \longrightarrow a \rangle, \\ a_2 = \langle \overline{b} \longrightarrow (b \text{ or } \top) \rangle, \\ a_3 = \langle b \longrightarrow c \rangle, \\ a_4 = \langle \overline{a}\overline{b}\overline{c} \longrightarrow c \rangle. \end{array}$$

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations

Motivation

Theory

Practical Algorithms

Baseline Algorithm

Plan Reuse Functional

Empirical Evaluation

Conclusion

Suboptimality

Example (ctd.): Possible plan for Π : $\overline{a\overline{b}\overline{c}}$ With observation of *b*.

Motivation

Theory

Practical Algorithms

Baseline Algorithm

Plan Reuse Functional Dependencies

Empirical Evaluation

Conclusion

Suboptimality

 $\overline{a}b\overline{c}$ a_1 a_2 $a\overline{b}\overline{c}$ obs b $ab\overline{c}$ obs b $ab\overline{c}$ a_3

Example (ctd.): Possible plan for Π :

With observation of b.

Only gap state.

Motivation

Theory

Practical Algorithms

Baseline Algorithm

Plan Reuse Functional Dependencies

Empirical Evaluation

Conclusion

Suboptimality

Example (ctd.): Possible plan for Π :

With observation of b.

No plan for $a\overline{b}\overline{c}$ without observing *b*:

- only applicable action a₂ makes b unknown
- then all actions inapplicable

Motivation

Theory

Practical Algorithms

Baseline Algorithm

Plan Reuse Functional Dependencies

Empirical Evaluation

Conclusion

13/19

BURG

Suboptimality

Example (ctd.): Possible plan for Π :

With observation of b.

No plan for $a\overline{b}\overline{c}$ without observing *b*:

- only applicable action a₂ makes b unknown
- then all actions inapplicable

Variable *b* cannot be removed \Rightarrow solution $\mathcal{O} = \{b\}$

Mot

Theory

Practical Algorithms

Baseline Algorithm

Plan Reuse Functional Dependencies

Empirical Evaluation

Conclusion

BURG

Suboptimality

Suboptimality

Suboptimality

Example (ctd.): Possible plan for Π :

Plan for $\overline{a}\overline{b}\overline{c}$ without observation of *b* exists.

 \Rightarrow optimal solution $\mathcal{O}^* = \emptyset$

 \Rightarrow solution $\mathcal{O} = \{b\}$ found with plan reuse was suboptimal

Motivation

Theory

Practical Algorithms

Baseline Algorithm

Plan Reuse Functional Dependencies

Empirical Evaluation

Conclusion

Further enhancement: functional dependencies

- Idea: If value of variable o can be inferred from values of observed variables o¹,...,oⁿ, need not observe o.
- Identify such functional dependencies in plan π .
- Replace observations of o in π by observation of o^1, \ldots, o^n .
- Remark: functional dependencies only have to hold in states reachable following π , not necessarily in all reachable states.
- Implemented: only exactly-one mutexes between propositional variables.

Motivation

Theory

Practical Algorithms

Baseline Algorithm

Functional

Functional Dependencies

Empirical Evaluation

Conclusion

Runtimes

- Implementation on top of муND planner¹.
- LAO* search [Hansen & Zilberstein, 2001] guided by FF heuristic [Hoffmann & Nebel, 2001].
- Domains:
 - BLOCKSWORLD
 - FIRSTRESPONDERS
 - TIDYUP

Legend:

- Gr = greedy
- PR = plan reuse
- FD = functional dependencies

¹https://bitbucket.org/robertmattmueller/mynd

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations

Motivation

Theory

Practical Algorithms

Empirical Evaluation

Conclusion

Runtimes

Motivation

Theory

R. Mattmüller, M. Ortlieb, E. Wacker - Minimizing Observations September 25th, 2014

Observation Set Cardinalities

Domain-specific Observations

Variables in resulting observation sets:	Motivation
	Theory
ONTABLE	Practical Algorithms
CLEAR	Empirical Evaluation
(either of them alone is sufficient.)	Conclusion
■ FIRSTRESPONDERS:	
 FIRE (in all tasks, for relevant locations) In one instance without road to hospital: VICTIMSTATUS – needs to be observed for applicability of TREATVICTIMONSCENE. 	
TIDYUP: relevant instances of	
■ GRIPPERSTATUS	
TABLECLEAN	
DoorState	13
	ХY Х

- ROBOTLOCATION
- **CUPLOCATION**

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker - Minimizing Observations

18/19

_ = ΙI.

Conclusion and Future Work

Conclusion:

- Theory: OBSERVEINCLMIN is 2-EXPTIME-complete.
- Presented asymptotically optimal baseline greedy top-down algorithm for OBSERVEINCLMIN.
- Extended it with
 - plan reuse (pays off) and
 - functional dependencies (do not really pay off).

Future work:

- Complement top-down with bottom-up procedure.
- Investigate variable ordering heuristics for the iteration over candidate variables for removal.
- Study problem on domain instead of planning task level.

Mot

Theory

Practical Algorithms

Empirical Evaluation

Conclusion