
Minimizing Necessary Observations
for Nondeterministic Planning

Robert Mattmüller Manuela Ortlieb Erik Wacker
Research Group Foundations of Artificial Intelligence
Department of Computer Science
University of Freiburg, Germany

September 25th, 2014

Motivation

Theory

Practical
Algorithms

Empirical
Evaluation

Conclusion

Motivation
Example: Partially Observable Blocksworld Domain with
Nondeterministic put-down Operator

observe clear()

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 2 / 19

Motivation

Theory

Practical
Algorithms

Empirical
Evaluation

Conclusion

Motivation
Example: Partially Observable Blocksworld Domain with
Nondeterministic put-down Operator

Observing clear predicate sufficient to find solutions.

Initial state known⇒ overhead camera sufficient as a sensor.

Question: How to find minimal sets of variables sufficient for
solution existence in arbitrary POND planning tasks?

Remark: Here, “solution” means strong cyclic plan:
closed: defined for all belief states it may reach, and
proper: no dead ends

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 3 / 19

Motivation

Theory

Practical
Algorithms

Empirical
Evaluation

Conclusion

Preliminaries
Formalism

Problem ObserveInclMin:

Input: POND planning task Π = 〈V,B0,B?,A,W〉 with
state variables V
initial belief state B0
goal description B?

nondeterministic actions A
possibly observable variablesW ⊆V

Output: Inclusion-minimal set of variables O ⊆W such
that there exists a strong cyclic plan for Π observing only
variables from O, or None if no such set O exists.

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 4 / 19

Motivation

Theory

Practical
Algorithms

Empirical
Evaluation

Conclusion

Theory
Hardness Result

Theorem (Rintanen, 2004)
The strong cyclic plan existence problem for POND planning,
PlanExPOND, is 2-Exptime-complete.

Theorem
ObserveInclMin is 2-Exptime-complete.

Proof.
Trivial reduction from PlanExPOND
⇒ ObserveInclMin 2-Exptime-hard.

Naive algorithm iterating over all subsets ofW
⇒ ObserveInclMin ∈ 2-Exptime.

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 5 / 19

Motivation

Theory

Practical
Algorithms

Empirical
Evaluation

Conclusion

Theory

Question: Can we improve over the naive algorithm from the
proof?

Assumption: No obviously irrelevant variables inW .
Ignore variables known in B0 and never made unknown by any
action.

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 6 / 19

Motivation

Theory

Practical
Algorithms
Baseline Algorithm

Plan Reuse

Functional
Dependencies

Empirical
Evaluation

Conclusion

Baseline Algorithm
Simple Greedy Algorithm

function simpleGreedySearch(Π):
if Π is unsolvable then

return None
Compute some plan π for Π

Let O be the set of variables actually observed in π

while Π still solvable with some o removed from O do
Remove o from O

return O

Theorem
Function simpleGreedySearch

runs in 2-Exptime,
correctly solves ObserveInclMin.

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 7 / 19

Motivation

Theory

Practical
Algorithms
Baseline Algorithm

Plan Reuse

Functional
Dependencies

Empirical
Evaluation

Conclusion

Plan Reuse
Motivation

! simpleGreedySearch correct

! simpleGreedySearch asymptotically optimal

% simpleGreedySearch naive and inefficient

w Look for ways to speed up simpleGreedySearch!

w Reuse portions of plan not affected by dropping a variable.

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 8 / 19

Motivation

Theory

Practical
Algorithms
Baseline Algorithm

Plan Reuse

Functional
Dependencies

Empirical
Evaluation

Conclusion

Plan Reuse
Example, W = {x,y}

observe y observe y

observe x

Plan observing x and y:

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 9 / 19

Motivation

Theory

Practical
Algorithms
Baseline Algorithm

Plan Reuse

Functional
Dependencies

Empirical
Evaluation

Conclusion

Plan Reuse
Example, W = {x,y}

observe x

Reusable plan frag-
ment if y unobservable:

y known or
never needs to be
observed
before goal

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 9 / 19

Motivation

Theory

Practical
Algorithms
Baseline Algorithm

Plan Reuse

Functional
Dependencies

Empirical
Evaluation

Conclusion

Plan Reuse
Example, W = {x,y}

observe x

Gap states that
need replanning

Gap 1 Gap 2

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 9 / 19

Motivation

Theory

Practical
Algorithms
Baseline Algorithm

Plan Reuse

Functional
Dependencies

Empirical
Evaluation

Conclusion

Plan Reuse
Example, W = {x,y}

observe x

observe x

Plan to fill gap 1

Gap 1 Gap 2

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 9 / 19

Motivation

Theory

Practical
Algorithms
Baseline Algorithm

Plan Reuse

Functional
Dependencies

Empirical
Evaluation

Conclusion

Plan Reuse
Example, W = {x,y}

observe x

observe x

Plan to fill gap 2

Gap 1 Gap 2

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 9 / 19

Motivation

Theory

Practical
Algorithms
Baseline Algorithm

Plan Reuse

Functional
Dependencies

Empirical
Evaluation

Conclusion

Plan Reuse
Soundness

To eliminate variable y:
Let π be the old plan still observing y.
Identify gaps 1, . . . ,n in π .
Let πy be the reusable fragment of π .
Let πj , j = 1, . . . ,n, be the new sub-plans filling the gaps.
Let π ′ = πy⊕π1⊕·· ·⊕πn (⊕= function overriding).

Lemma
If π and all πj are strong cyclic plans, then so is π ′.

Proof sketch.
In π ′, “last” subplan “wins”. Thus, closedness and properness
of π and all πj carry over to π ′.

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 10 / 19

Motivation

Theory

Practical
Algorithms
Baseline Algorithm

Plan Reuse

Functional
Dependencies

Empirical
Evaluation

Conclusion

Plan Reuse
Soundness

To minimize set of observation variables:
Eliminate variables one by one, if possible.

Theorem
Plan π resulting from successive elimination of variables is
strong cyclic plan.

Proof sketch.
Base case + inductive application of previous lemma.

Remarks:
In induction, skip gaps filled/circumvented by chance
when filling earlier gap.
In elimination step, existence of πj not guaranteed.
Resulting π ′ not necessarily with inclusion minimal set O.

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 11 / 19

Motivation

Theory

Practical
Algorithms
Baseline Algorithm

Plan Reuse

Functional
Dependencies

Empirical
Evaluation

Conclusion

Plan Reuse
Suboptimality

Remark:
Observation sets found with plan reuse can be suboptimal.

Example: Let Π with
Propositional variables V = {a,b,c},
Initial belief state B0 = abc,
Goal belief state B? = c,
Observable variablesW = {b},
Actions A= {a1,a2,a3,a4}, where

a1 = 〈a−→ a〉,
a2 = 〈b−→ (b or >)〉,
a3 = 〈b−→ c〉,
a4 = 〈abc−→ c〉.

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 12 / 19

Motivation

Theory

Practical
Algorithms
Baseline Algorithm

Plan Reuse

Functional
Dependencies

Empirical
Evaluation

Conclusion

Plan Reuse
Suboptimality

Example (ctd.): Possible plan for Π:

abc

abc

abc
abc

abc

abc

a1

a2

obs b

obs b

a3

abc

a4

With observation of b.

Only gap state.No plan for abc without
observing b:

only applicable action a2
makes b unknown
then all actions
inapplicable

Variable b cannot be removed
⇒ solution O = {b}

Plan for abc without
observation of b exists.

⇒ optimal solution O∗ = /0

⇒ solution O = {b} found with
plan reuse was suboptimal

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 13 / 19

Motivation

Theory

Practical
Algorithms
Baseline Algorithm

Plan Reuse

Functional
Dependencies

Empirical
Evaluation

Conclusion

Plan Reuse
Suboptimality

Example (ctd.): Possible plan for Π:

abc

abc

abc
abc

abc

abc

a1

a2

obs b

obs b

a3

abc

a4

With observation of b.

Only gap state.

No plan for abc without
observing b:

only applicable action a2
makes b unknown
then all actions
inapplicable

Variable b cannot be removed
⇒ solution O = {b}

Plan for abc without
observation of b exists.

⇒ optimal solution O∗ = /0

⇒ solution O = {b} found with
plan reuse was suboptimal

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 13 / 19

Motivation

Theory

Practical
Algorithms
Baseline Algorithm

Plan Reuse

Functional
Dependencies

Empirical
Evaluation

Conclusion

Plan Reuse
Suboptimality

Example (ctd.): Possible plan for Π:

abc

abc

abc
abc

abc

abc

a1

a2

obs b

obs b

a3

abc

a4

With observation of b.

Only gap state.

No plan for abc without
observing b:

only applicable action a2
makes b unknown
then all actions
inapplicable

Variable b cannot be removed
⇒ solution O = {b}

Plan for abc without
observation of b exists.

⇒ optimal solution O∗ = /0

⇒ solution O = {b} found with
plan reuse was suboptimal

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 13 / 19

Motivation

Theory

Practical
Algorithms
Baseline Algorithm

Plan Reuse

Functional
Dependencies

Empirical
Evaluation

Conclusion

Plan Reuse
Suboptimality

Example (ctd.): Possible plan for Π:

abc

abc

abc
abc

abc

abc

a1

a2

obs b

obs b

a3

abc

a4

With observation of b.

Only gap state.

No plan for abc without
observing b:

only applicable action a2
makes b unknown
then all actions
inapplicable

Variable b cannot be removed
⇒ solution O = {b}

Plan for abc without
observation of b exists.

⇒ optimal solution O∗ = /0

⇒ solution O = {b} found with
plan reuse was suboptimal

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 13 / 19

Motivation

Theory

Practical
Algorithms
Baseline Algorithm

Plan Reuse

Functional
Dependencies

Empirical
Evaluation

Conclusion

Plan Reuse
Suboptimality

Example (ctd.): Possible plan for Π:

abc

abc

abc
abc

abc

abc

a1

a2

obs b

obs b

a3

abc

a4

With observation of b.

Only gap state.No plan for abc without
observing b:

only applicable action a2
makes b unknown
then all actions
inapplicable

Variable b cannot be removed
⇒ solution O = {b}

Plan for abc without
observation of b exists.

⇒ optimal solution O∗ = /0

⇒ solution O = {b} found with
plan reuse was suboptimal

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 13 / 19

Motivation

Theory

Practical
Algorithms
Baseline Algorithm

Plan Reuse

Functional
Dependencies

Empirical
Evaluation

Conclusion

Plan Reuse
Suboptimality

Example (ctd.): Possible plan for Π:

abc

abc

abc
abc

abc

abc

a1

a2

obs b

obs b

a3

abc

a4

With observation of b.

Only gap state.No plan for abc without
observing b:

only applicable action a2
makes b unknown
then all actions
inapplicable

Variable b cannot be removed
⇒ solution O = {b}

Plan for abc without
observation of b exists.

⇒ optimal solution O∗ = /0

⇒ solution O = {b} found with
plan reuse was suboptimal

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 13 / 19

Motivation

Theory

Practical
Algorithms
Baseline Algorithm

Plan Reuse

Functional
Dependencies

Empirical
Evaluation

Conclusion

Plan Reuse
Suboptimality

Example (ctd.): Possible plan for Π:

abc

abc

abc
abc

abc

abc

a1

a2

obs b

obs b

a3

abc

a4

With observation of b.

Only gap state.No plan for abc without
observing b:

only applicable action a2
makes b unknown
then all actions
inapplicable

Variable b cannot be removed
⇒ solution O = {b}

Plan for abc without
observation of b exists.

⇒ optimal solution O∗ = /0

⇒ solution O = {b} found with
plan reuse was suboptimal

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 13 / 19

Motivation

Theory

Practical
Algorithms
Baseline Algorithm

Plan Reuse

Functional
Dependencies

Empirical
Evaluation

Conclusion

Functional Dependencies

Further enhancement: functional dependencies

Idea: If value of variable o can be inferred from values of
observed variables o1, . . . ,on, need not observe o.
Identify such functional dependencies in plan π .
Replace observations of o in π by observation of
o1, . . . ,on.
Remark: functional dependencies only have to hold in
states reachable following π , not necessarily in all
reachable states.
Implemented: only exactly-one mutexes between
propositional variables.

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 14 / 19

Motivation

Theory

Practical
Algorithms

Empirical
Evaluation

Conclusion

Empirical Evaluation
Runtimes

Implementation on top of myND planner1.
LAO* search [Hansen & Zilberstein, 2001] guided by
FF heuristic [Hoffmann & Nebel, 2001].
Domains:

Blocksworld
FirstResponders
TidyUp

Legend:
Gr = greedy
PR = plan reuse
FD = functional dependencies

1https://bitbucket.org/robertmattmueller/mynd
September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 15 / 19

https://bitbucket.org/robertmattmueller/mynd

Motivation

Theory

Practical
Algorithms

Empirical
Evaluation

Conclusion

Empirical Evaluation
Runtimes

Overall runtime needed for finding final observation set.

0 5 10 15 20 25 30 35

101

102

103

104

Task ID

Ti
m
e
(s
ec

)

Gr
Gr+PR

Gr+PR+FD

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 16 / 19

Motivation

Theory

Practical
Algorithms

Empirical
Evaluation

Conclusion

Empirical Evaluation
Observation Set Cardinalities

Cardinalities of the observation sets before/after minimization.

0 5 10 15 20 25 30 35
0

10

20

30

40

Task ID

C
ar
di
na

lit
y

|W|
|O|

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 17 / 19

Motivation

Theory

Practical
Algorithms

Empirical
Evaluation

Conclusion

Empirical Evaluation
Domain-specific Observations

Variables in resulting observation sets:
Blocksworld: mostly

OnTable
Clear

(either of them alone is sufficient.)
FirstResponders:

Fire (in all tasks, for relevant locations)
In one instance without road to hospital:
VictimStatus – needs to be observed for applicability of
TreatVictimOnScene.

TidyUp: relevant instances of
GripperStatus
TableClean
DoorState
RobotLocation
CupLocation

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 18 / 19

Motivation

Theory

Practical
Algorithms

Empirical
Evaluation

Conclusion

Conclusion and Future Work

Conclusion:
Theory: ObserveInclMin is 2-Exptime-complete.
Presented asymptotically optimal baseline greedy
top-down algorithm for ObserveInclMin.
Extended it with

plan reuse (pays off) and
functional dependencies (do not really pay off).

Future work:
Complement top-down with bottom-up procedure.
Investigate variable ordering heuristics for the iteration
over candidate variables for removal.
Study problem on domain instead of planning task level.

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 19 / 19

	Motivation
	Theory
	Practical Algorithms
	Baseline Algorithm
	Plan Reuse
	Functional Dependencies

	Empirical Evaluation
	Conclusion

