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Motivation
Example: Partially Observable Blocksworld Domain with
Nondeterministic put-down Operator

observe clear( )
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Motivation
Example: Partially Observable Blocksworld Domain with
Nondeterministic put-down Operator

Observing clear predicate sufficient to find solutions.

Initial state known⇒ overhead camera sufficient as a sensor.

Question: How to find minimal sets of variables sufficient for
solution existence in arbitrary POND planning tasks?

Remark: Here, “solution” means strong cyclic plan:
closed: defined for all belief states it may reach, and
proper: no dead ends
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Preliminaries
Formalism

Problem ObserveInclMin:

Input: POND planning task Π = 〈V,B0,B?,A,W〉 with
state variables V
initial belief state B0
goal description B?

nondeterministic actions A
possibly observable variablesW ⊆V

Output: Inclusion-minimal set of variables O ⊆W such
that there exists a strong cyclic plan for Π observing only
variables from O, or None if no such set O exists.
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Theory
Hardness Result

Theorem (Rintanen, 2004)
The strong cyclic plan existence problem for POND planning,
PlanExPOND, is 2-Exptime-complete.

Theorem
ObserveInclMin is 2-Exptime-complete.

Proof.
Trivial reduction from PlanExPOND
⇒ ObserveInclMin 2-Exptime-hard.

Naive algorithm iterating over all subsets ofW
⇒ ObserveInclMin ∈ 2-Exptime.
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Theory

Question: Can we improve over the naive algorithm from the
proof?

Assumption: No obviously irrelevant variables inW .
Ignore variables known in B0 and never made unknown by any
action.
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Baseline Algorithm
Simple Greedy Algorithm

function simpleGreedySearch(Π):
if Π is unsolvable then

return None
Compute some plan π for Π

Let O be the set of variables actually observed in π

while Π still solvable with some o removed from O do
Remove o from O

return O

Theorem
Function simpleGreedySearch

runs in 2-Exptime,
correctly solves ObserveInclMin.
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Plan Reuse
Motivation

! simpleGreedySearch correct

! simpleGreedySearch asymptotically optimal

% simpleGreedySearch naive and inefficient

w Look for ways to speed up simpleGreedySearch!

w Reuse portions of plan not affected by dropping a variable.
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Plan Reuse
Example, W = {x,y}

observe y observe y

observe x

Plan observing x and y:
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Plan Reuse
Example, W = {x,y}

observe x

Reusable plan frag-
ment if y unobservable:

y known or
never needs to be
observed
before goal
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Plan Reuse
Example, W = {x,y}

observe x

Gap states that
need replanning

Gap 1 Gap 2
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Plan Reuse
Example, W = {x,y}

observe x

observe x

Plan to fill gap 1

Gap 1 Gap 2
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Plan Reuse
Example, W = {x,y}

observe x

observe x

Plan to fill gap 2

Gap 1 Gap 2
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Plan Reuse
Soundness

To eliminate variable y:
Let π be the old plan still observing y.
Identify gaps 1, . . . ,n in π .
Let πy be the reusable fragment of π .
Let πj , j = 1, . . . ,n, be the new sub-plans filling the gaps.
Let π ′ = πy⊕π1⊕·· ·⊕πn (⊕= function overriding).

Lemma
If π and all πj are strong cyclic plans, then so is π ′.

Proof sketch.
In π ′, “last” subplan “wins”. Thus, closedness and properness
of π and all πj carry over to π ′.

September 25th, 2014 R. Mattmüller, M. Ortlieb, E. Wacker – Minimizing Observations 10 / 19



Motivation

Theory

Practical
Algorithms
Baseline Algorithm

Plan Reuse

Functional
Dependencies

Empirical
Evaluation

Conclusion

Plan Reuse
Soundness

To minimize set of observation variables:
Eliminate variables one by one, if possible.

Theorem
Plan π resulting from successive elimination of variables is
strong cyclic plan.

Proof sketch.
Base case + inductive application of previous lemma.

Remarks:
In induction, skip gaps filled/circumvented by chance
when filling earlier gap.
In elimination step, existence of πj not guaranteed.
Resulting π ′ not necessarily with inclusion minimal set O.
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Plan Reuse
Suboptimality

Remark:
Observation sets found with plan reuse can be suboptimal.

Example: Let Π with
Propositional variables V = {a,b,c},
Initial belief state B0 = abc,
Goal belief state B? = c,
Observable variablesW = {b},
Actions A= {a1,a2,a3,a4}, where

a1 = 〈a−→ a〉,
a2 = 〈b−→ (b or >)〉,
a3 = 〈b−→ c〉,
a4 = 〈abc−→ c〉.
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Plan Reuse
Suboptimality

Example (ctd.): Possible plan for Π:

abc

abc

abc
abc

abc

abc

a1

a2

obs b

obs b

a3

abc

a4

With observation of b.

Only gap state.No plan for abc without
observing b:

only applicable action a2
makes b unknown
then all actions
inapplicable

Variable b cannot be removed
⇒ solution O = {b}

Plan for abc without
observation of b exists.

⇒ optimal solution O∗ = /0

⇒ solution O = {b} found with
plan reuse was suboptimal
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Functional Dependencies

Further enhancement: functional dependencies

Idea: If value of variable o can be inferred from values of
observed variables o1, . . . ,on, need not observe o.
Identify such functional dependencies in plan π .
Replace observations of o in π by observation of
o1, . . . ,on.
Remark: functional dependencies only have to hold in
states reachable following π , not necessarily in all
reachable states.
Implemented: only exactly-one mutexes between
propositional variables.
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Empirical Evaluation
Runtimes

Implementation on top of myND planner1.
LAO* search [Hansen & Zilberstein, 2001] guided by
FF heuristic [Hoffmann & Nebel, 2001].
Domains:

Blocksworld
FirstResponders
TidyUp

Legend:
Gr = greedy
PR = plan reuse
FD = functional dependencies

1https://bitbucket.org/robertmattmueller/mynd
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Empirical Evaluation
Runtimes

Overall runtime needed for finding final observation set.
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Empirical Evaluation
Observation Set Cardinalities

Cardinalities of the observation sets before/after minimization.
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Empirical Evaluation
Domain-specific Observations

Variables in resulting observation sets:
Blocksworld: mostly

OnTable
Clear

(either of them alone is sufficient.)
FirstResponders:

Fire (in all tasks, for relevant locations)
In one instance without road to hospital:
VictimStatus – needs to be observed for applicability of
TreatVictimOnScene.

TidyUp: relevant instances of
GripperStatus
TableClean
DoorState
RobotLocation
CupLocation
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Conclusion and Future Work

Conclusion:
Theory: ObserveInclMin is 2-Exptime-complete.
Presented asymptotically optimal baseline greedy
top-down algorithm for ObserveInclMin.
Extended it with

plan reuse (pays off) and
functional dependencies (do not really pay off).

Future work:
Complement top-down with bottom-up procedure.
Investigate variable ordering heuristics for the iteration
over candidate variables for removal.
Study problem on domain instead of planning task level.
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