
Pattern-Database Heuristics for Partially
Observable Nondeterministic Planning

Manuela Ortlieb and Robert Mattmüller

Research Group Foundations of AI, University of Freiburg, Germany
{ortlieb,mattmuel}@informatik.uni-freiburg.de

Abstract. Heuristic search is the dominant approach to classical plan-
ning. However, many realistic problems violate classical assumptions such
as determinism of action outcomes or full observability. In this paper, we
investigate how – and how successfully – a particular classical technique,
namely informed search using an abstraction heuristic, can be transferred
to nondeterministic planning under partial observability. Specifically, we
explore pattern-database heuristics with automatically generated pat-
terns in the context of informed progression search for strong cyclic plan-
ning under partial observability. To that end, we discuss projections and
how belief states can be heuristically assessed either directly or by going
back to the contained world states, and empirically evaluate the resulting
heuristics internally and compared to a delete-relaxation and a blind ap-
proach. From our experiments we can conclude that in terms of coverage
and guidance, it is preferable to represent both nondeterminism and par-
tial observability in the abstraction (instead of relaxing them), and that
the resulting abstraction heuristics significantly outperform both blind
search and a delete-relaxation approach where nondeterminism and par-
tial observability are also relaxed.

Keywords: AI planning, nondeterministic planning, partial observabil-
ity, heuristic search, pattern databases

1 Introduction

Classical planning is a well-understood problem that has been successfully ap-
proached over the past decades. Both for satisficing and for optimal planning,
there are algorithms in the recent literature that scale well beyond simple toy
problems [18,11]. Although lately the focus of research in classical planning has
shifted towards algorithmic enhancements and pruning techniques orthogonal
to planning heuristics, accurate domain-independent heuristics were the main
driving factor in the progress of classical planning for many years. However, not
all planning tasks fit into the framework of classical planning. Often, action out-
comes are nondeterministic and the environment is only partially observable. We
would still like to capitalize on the advances made in classical planning when
solving such problems. In previous work [1,2,16], we already handled nondeter-
minism, but only full observability. As part of our efforts to get closer to real-
world problems with the approach developed before, in this work, we consider

the problem of finding so called strong cyclic plans [6] for partially observable
nondeterministic planning tasks, i.e., policies that are guaranteed to never lead
into states where they are undefined, and always maintain the possibility to
reach a goal state. There exist various approaches to finding strong cyclic plans
(for fully observable problems, but in principle adaptable to partially observable
problems), including a symbolic nested fixpoint algorithm [6,13], repeated invo-
cations of a classical planner in the all-outcomes determinization of the given
nondeterministic planning task until no unsolved leaf nodes remain in the gen-
erated subgraph of the transition system [14,8], and (informed) forward search
in the nondeterministic transition system induced by the planning task guided
by an appropriate heuristic function [4,16]. In this paper, we study the latter
approach, more specifically, LAO* search [9]. Whereas a similar study has been
performed by Bryce et al. [4] before, that study only considers delete-relaxation
heuristics to guide the search. Here, we want to complement that study with
an investigation of domain-independent abstraction heuristics, more specifically,
pattern-database (PDB) heuristics [7]. When Bryce et al. [4] studied relaxation
heuristics, they investigated how to evaluate a belief state by either (a) sampling
world states from that belief state, evaluating them using a relaxation heuristic
assuming full observability, and aggregating the estimates across samples, or (b)
directly evaluating the belief state by extending the relaxed planning graph from
the fully observable setting to a so-called labeled uncertainty graph (LUG) for
the partially observable setting. In this work, we perform a similar comparison
between a sampling-based approach and a more direct evaluation of belief states
for pattern-database heuristics. Our main research question is whether there is
a significant difference in how well approaches (a) and (b) perform empirically,
and if so, which performs better.

2 Preliminaries

2.1 Nondeterministic Planning under Partial Observability

We formalize nondeterministic planning tasks under partial observability using
a finite-domain representation for the state variables and separate causative and
sensing actions, extending our previous formalization for fully observable nonde-
terministic planning tasks [16]. A partially observable nondeterministic planning
task is a tuple Π = 〈V, s0, s?,O〉 consisting of the following components: V is
a finite set of state variables v, each with a finite domain Dv and an extended
domain D+

v = Dv] {⊥}, where ⊥ denotes the undefined or don’t-care value.
A partial state is a function s with s(v) ∈ D+

v for all v ∈ V. We say that s is
defined for v ∈ V if s(v) 6= ⊥. A state is a partial state s such that its scope
scope(s) = {v ∈ V | s(v) 6= ⊥} is V. The set of all states s over V is denoted as
S, and the set of all belief states B over V is denoted as B = 2S . Depending on
the context, a partial state sp can be interpreted either as a condition, which is
satisfied in a state s iff s agrees with sp on all variables for which sp is defined,
or as an update on a state s, resulting in a new state s′ that agrees with sp on
all variables for which sp is defined, and with s on all other variables. The initial

state s0 of a problem is a partial state (i.e., a compact encoding of a compactly
encodable belief state), and the goal description s? is a partial state. A state s
is a goal state iff s? is satisfied in s, and a belief state B is a goal belief state
iff each state s ∈ B is a goal state. O is a finite set of actions partitioned into
causative actions Oc and sensing actions Os. Causative actions are of the form
ac = 〈Pre,Eff 〉, where the precondition Pre is a partial state, and the effect
Eff is a finite set of partial states eff , the nondeterministic outcomes of a. The
application of a nondeterministic outcome eff to a state s is the state app(eff , s)
that results from updating s with eff . The application of an effect Eff to s is the
set of states app(Eff , s) = {app(eff , s) | eff ∈ Eff } that might be reached by ap-
plying a nondeterministic outcome from Eff to s. Sensing actions are of the form
as = 〈Pre,Obs〉, where the precondition Pre is a partial state, and the observed
variables Obs are a subset of V. An action is applicable in a state s iff its precon-
dition is satisfied in s, and it is applicable in a belief state B if it is applicable in
all s ∈ B. Actions are applied in belief states and result in sets of belief states.
The application of an action in a belief state B is undefined if the action is in-
applicable in B. Otherwise, the application of a causative action ac = 〈Pre,Eff 〉
to B is the singleton set app(ac, B) = {{app(eff , s) | eff ∈ Eff , s ∈ B}}, and
the application of a sensing action as = 〈Pre,Obs〉 to B is the set of nonempty
belief states that result from splitting B according to possible observations, i.e.,
app(as, B) = {{s ∈ B | s′ ⊆ s} | s′ partial state with scope(s′) = Obs} \ {∅}.
All actions have unit cost. Partially observable nondeterministic planning tasks
as defined above induce nondeterministic transition systems where the nodes
are the (reachable) belief states and where there is an arc from a belief state
B to a belief state B′ labelled with an action a iff a is applicable in B and
B′ ∈ app(a,B). Given a partially observable nondeterministic planning task, we
seek a strong cyclic plan solving the task, i.e., a partial mapping π from belief
states to applicable actions such that for all belief states B reachable from the
initial belief state B0 = {s ∈ S | s satisfies s0} following π, B is either a goal be-
lief state, or π is defined for B and at least one goal belief state is reachable from
B following π. Later, we will occasionally simplify a partially observable prob-
lem by assuming full observability. In that case, the induced transition system
will be defined slightly differently: First, all nodes will be world states instead
of belief states, second, sensing actions will be ignored (since sensing occurs
implicitly), and third, applying a causative action ac = 〈Pre,Eff 〉 to a node rep-
resenting a state s will no longer lead to a unique successor node, but rather to
one successor node for each successor state in {app(eff , s) | eff ∈ Eff } (i.e., AND
nodes in the transition system are caused by nondeterministic actions instead of
splitting of belief states). Also, we will sometimes simplify partially observable
nondeterministic problems by determinizing them. In that case, we replace each
causative action ac = 〈Pre,Eff 〉, Eff = {eff 1, . . . , eff n}, by n causative actions
aic = 〈Pre, {eff i}〉 for i = 1, . . . , n. Together with a unique initial state, this
essentially leads to a classical planning problem.

2.2 Pattern-Database Heuristics

In classical planning, pattern-database heuristics work by projecting the plan-
ning task to a set of variables P ⊆ V, the pattern, solving the resulting simplified
planning task optimally, storing the optimal goal distances of all abstract states
in a pattern database, and eventually using these abstract distances as heuris-
tic values during search [7]. In addition, one often uses more than one pattern
and maximizes over non-additive patterns and adds heuristic values from prov-
ably additive patterns. The most accurate admissible heuristic obtainable from
a set of patterns is the so-called canonical heuristic function [10], which we will
also use in this work. Formally, the projection of a partially observable non-
deterministic planning task Π = 〈V, s0, s?,O〉 to a pattern P ⊆ V is defined
component- and element-wise: Π|P = 〈P, s0|P , s?|P ,O|P 〉, where s|P (v) = s(v)
for all v ∈ scope(s) ∩ P , and s|P (v) = ⊥, otherwise; where O|P = {a|P | a ∈ O},
ac|P = 〈Pre|P , {eff |P | eff ∈ Eff }〉 for each causative action ac = 〈Pre,Eff 〉,
and as|P = 〈Pre|P ,Obs ∩ P 〉 for each sensing action as = 〈Pre,Obs〉. To ensure
that projections preserve action applications and goal states, we require that for
each pattern P to which we project, all variables in P are either observable by
some sensing action, or do not occur in any precondition or goal condition, or
their value is known initially and never becomes uncertain through any action
application.

3 Simplifying a Partially Observable Nondeterministic
Planning Task

The only problem simplification that occurs in pattern-database heuristics for
classical planning is the projection to the pattern. Our partially observable non-
deterministic problems differ from classical problems in two respects: nonde-
terministic actions and partial observability. Our main research question is to
investigate the best way how to deal with these two aspects when computing
pattern databases. Both nondeterminism and partial observability can easily be
retained in the abstraction: If an action a leads from state s to one of two different
states s′1 and s′2 in the original problem, and s′1 and s′2 can still be distinguished
in the abstraction under consideration, then a will still be nondeterministic in
the abstract problem, leading from the abstraction of s to either the abstrac-
tion of s′1 or the abstraction of s′2. Similarly, if two states s1 and s2 cannot be
distinguished in the original problem and belong to some common belief state
B, their abstract versions cannot be distinguished in the abstract problem and
the abstraction of B will contain the abstractions of s1 and of s2. Thus, besides
abstracting to a pattern, we have four possibilities how to further simplify the
abstract problem, namely all combinations of determinizing or not determinizing
the problem and assuming or not assuming full observability in the abstraction.
The resulting abstract problem will fall into one of the four categories in the
following table:

determinization
yes no

observability
full

(A) FO-Det
Pspace-complete [5]

(B) FO-NDet
Exptime-complete [15]

partial
(C) PO-Det
Expspace-complete [19]

(D) PO-NDet
2-Exptime-complete [19]

This suggests that the abstract problem will be easier to solve the more
sources of complexity (partial observability, nondeterminism) we abstract away.
On the other hand, we expect better-informed heuristics and better guidance
the fewer of these sources we abstract away:

(A) Full observability, determinization (FO-Det): This leads to a classical ab-
stract problem that we can solve with classical regression search as it is usu-
ally done when computing PDB heuristics for classical problems. Information
about nondeterministic outcomes belonging to the same original nondeter-
ministic action is lost. Therefore, we implicitly minimize over possible action
outcomes and thus underestimate true worst case or expected case costs.
The resulting optimistic goal distances are stored in PDBs for all patterns
in the pattern collection under consideration. During LAO* search, when
PDB values are retrieved, since the PDBs contain (projected) world states
as keys, we cannot directly look up a heuristic value for the (projection of
the) belief state B we want to evaluate. Rather, we have to consider the
(projections of the) world states s contained in B individually. This poses
two challenges: The practical challenge lies in the fact that B can contain ex-
ponentially many world states in the number of state variables, which leads
to prohibitively many PDB lookups for a single heuristic evaluation of a be-
lief state. We resolve this by experimenting with different numbers of world
state samples from B (sampling 1, 5, 10, 15, or all states). The conceptual
challenge is the question how to aggregate heuristic values for individual
states s ∈ B. Summing costs corresponds to assuming that all s ∈ B have
to be solved independently without positive interactions of the individual
plans for each, whereas maximizing corresponds to assuming maximal pos-
itive interaction, where an optimal plan for the most expensive state s ∈ B
happens to solve all other states in B along the way. We experimented with
both possible aggregation rules.

(B) Full observability, no determinization (FO-NDet): In this case, we end up
with an AND/OR graph (a nondeterministic transition system) in the ab-
straction with splitting over causative action outcomes instead of over sens-
ing action outcomes. This leads to the question of which cost measure to
use in the abstract transition system. If we used weak (optimistic) goal dis-
tances, this would be the same as the FO-Det case above. We cannot use
strong (pessimistic) goal distances, since this would assign cost values of ∞
to belief states that actually admit a strong cyclic solution. Instead, we per-
form value iteration on the resulting abstract AND/OR graph to label the
abstract states with expected costs, i.e., expected numbers of steps to the

nearest goal state. Lacking information about probabilities of different ac-
tion outcomes, we assign them uniform probabilities. Moreover, the remarks
about sampling of world states from the belief state under consideration
from the FO-Det case still apply.

(C) Partial observability, determinization (PO-Det): In this case, the only un-
certainty in any reachable belief state comes from initial state uncertainty.
We end up with an AND/OR graph with splitting over sensing action out-
comes. If the initial state happens to be unique (fully observable), PO-Det
amounts to FO-Det, and the complexity reduces from Expspace-complete
to Pspace-complete.

(D) Partial observability, no determinization (PO-NDet): In this case, states in
the abstract transition system – and therefore the keys in the PDBs – are still
belief states (not world states). As in the other cases where AND nodes in the
abstract transition systems are involved, we have to choose an aggregation
rule for interior nodes (optimistic, pessimistic, or expected costs). Again, we
use expected costs under the assumption that each successor of an AND
node has the same weight. We leave the idea of weighing successor nodes
(belief states) by cardinality for future work.

In the experiments below we compare three of these four approaches among
each other and to (a) a delete-relaxation approach with additional determiniza-
tion and assumption of full observability and (b) the blind heuristic.

4 Implementation Details

We implemented a tool in Java that computes strong cyclic plans for partially
observable nondeterministic planning tasks using LAO* search [9] guided by FO-
Det, FO-NDet and PO-NDet PDB heuristics.1 In all cases, we use the canonical
heuristic function induced by a pattern collection computed using Haslum et
al.’s local search in the space of pattern collections [10]. In the case where we
preserve partial observability in the abstraction (PO-NDet), we consider two
different ways of computing a pattern collection: the one where we also assume
partial observability during pattern search, and the one where we avoid searching
for a suitable pattern collection in the belief space by assuming full observability
during pattern search. After that local search terminates, we use the resulting
pattern collection to create pattern databases under partial observability. Within
LAO*, we use a nonstandard expansion strategy in the case when there is no
unexpanded non-goal leaf node in the most promising partial solution graph:
We alternate between expanding an unexpanded non-goal leaf node with min-
imal h value outside the most promising partial solution graph and expanding

1 We disregard PO-Det for the following reasons: (a) The additional simplification
over PO-NDet appears minor and in PO-Det we would still have to deal with an
AND/OR graph (instead of simply an OR graph) in the abstraction, and (b) two
of the three benchmarks domains we consider (Fr and Blocks, see below) have
fully observable initial states, i.e., in these benchmarks PO-Det and FO-Det would
collapse anyway.

an unexpanded non-goal leaf node outside the most promising partial solution
graph which was created earliest among all such nodes. Moreover, our LAO* im-
plementation uses maximization and discounting to aggregate cost estimates at
interior nodes. Belief states and transitions between them are represented sym-
bolically using Binary Decision Diagrams (BDDs) [3]. Sampling of world states
from belief states represented as BDDs is done uniformly with replacement.

5 Experiments

We ran our planner on a compute server equipped with AMD Opteron 2.3 GHz
CPUs. For each single planner run, we imposed a 4GB memory limit and a 30
minute time limit on the JRE. The time for the search for a pattern collection was
limited to 10 minutes. When that limit was reached, the best pattern collection
found so far was used. If the pattern collection search terminated in less than
10 minutes, the main LAO* search was allowed to use up the remainder of the
original 30 minutes.

5.1 Benchmark Domains

We adapted the FirstResponders (Fr) and Blocksworld (Blocks) do-
mains from the fully observable nondeterministic track of the International Plan-
ning Competition 2008 by requiring active sensing for certain state variables:

– Fr: The task is to plan a rescue operation where fires have to be extinguished
and victims have to be treated on-scene or at a hospital. We required active
sensing for victims’ health statuses and for whether fires are still burning or
already extinguished.

– Blocks: Unlike in the classical Blocks domain, where towers of blocks
have to be reconfigured using deterministic block movement actions, in our
formalization there are actions that can fail, like transferring a block from
one tower to another. We require active sensing for block positions.

In addition, we experimented with a variant of the Canadian Traveler Problem:

– Ctp: The Canadian Traveler Problem [17] is originally a probabilistic plan-
ning problem which we transformed into a partially observable nondetermin-
istic one. It consists of a road map where an agent has to travel from a start
to a goal location. In the original formalism, each road is passable with a
specific probability and driving roads has different costs. In our transforma-
tion, driving a road has unit costs and there are roads which are definitively
passable, definitively not passable or for which it is unknown if they are pass-
able. Sensing actions are used to determine if an incident road is passable or
not.

5.2 Belief State Sampling

When we assume full observability in the abstractions, in order to evaluate a
belief state B during LAO* search, we need to sample world states from B,
evaluate them individually, and aggregate the resulting heuristic values into a
heuristic value for B. Before comparing FO-Det, FO-NDet, and PO-NDet, we
first want to find suitable parameters for the numbers of belief state samples (we
experimented with 1, 5, 10, 15, all) and aggregation methods (we experimented
with maximizing and adding) used in FO-Det and FO-NDet. The results are
summarized in Table 1. For all sampling methods except for “all”, sampling is
with replacements. Sampling “all” considers each state from B exactly once. In
this experiment, for each problem instance, we use the same pattern collection
for all configurations of sample numbers and aggregation methods to improve
comparability of the results. Therefore, preprocessing times (pattern collection
computation times) are the same for all configurations and hence omitted from
the table. In the Fr domain with summation, coverage and guidance tend to
increase with the number of samples with the exception of sampling all states.
With summation, it is not a good idea to sum over all world states, because
this introduces an unjustified bias of the search towards low-cardinality belief
states. With maximization, we get mixed guidance, time and coverage results
for different numbers of samples, with a small advantage of maximizing over all
world states. Overall, in Fr FO-NDet has a higher coverage than FO-Det. In
the Blocks domain, it turns out that it is often cheaper to sample all world
states (without replacement) than to use a fixed number of samples (with re-
placement), since the cardinalities of the encountered belief states are very small
(typically less than 10). When sampling is used, guidance and search time tend
to improve with the number of samples. That means that time spent for sampling
is compensated by better guidance, and in terms of coverage, FO-Det slightly
outperforms FO-NDet. Overall, in Blocks FO-Det tends to outperform FO-
NDet. In the Ctp domain, it was not possible to enumerate all world states of
the belief states encountered during search because of their exponential cardinal-
ity. There is no significant difference between FO-Det and FO-NDet or between
maximizing and summing in the Ctp domain. In conclusion, except for a few
Blocks instances, coverage is slightly higher with FO-NDet than with FO-Det,
and in both cases, the sweet spot of the sample number seems to be around 10
or 15. Summing over samples appears a bit more promising than maximizing
over them.

5.3 Pattern Selection

When we assume partial observability in the abstraction, we are faced with dif-
ferent ways of performing the search for suitable pattern collections. In Table 2,
we report on an experiment for the PO-NDet case with the following three con-
figurations: In configuration “steps 0”, we perform no pattern collection search
at all, but rather use a collection of singleton patterns with one pattern for each
goal variable. In configuration “pop mip0.5”, we assume partial observability also

Table 1. Coverage (cov) and guidance (number of node expansions, exp) and search
times (time, in seconds) on commonly solved problems 30 (FO-Det) and 28 (FO-Ndet)
in Fr, 10 in Blocks, 26 in Ctp) for different numbers of samples (1, 5, 10, 15, all)
and different aggregation methods (maximizing and adding).

Domain FO-Det FO-NDet
max sum max sum

n cov exp time cov exp time cov exp time cov exp time

Fr 1 42 13835 995 41 13835 1357 40 11084 1125 40 11084 1077
(75 tasks) 5 54 6161 291 58 3644 156 58 6599 855 60 4868 206

10 56 12194 755 62 2716 162 55 11097 494 64 3338 117
15 51 11267 579 62 4481 320 56 11420 631 65 4998 341
all 54 11085 395 32 27048 1900 59 9810 309 31 12751 665

Blocks 1 12 3573 24 12 3573 46 14 4024 49 14 4024 76
(30 tasks) 5 14 2766 50 12 2214 34 13 2647 52 13 3261 89

10 13 2509 34 14 1863 37 12 1699 25 12 3532 77
15 14 1922 31 14 1796 33 12 1271 25 13 2495 60
all 13 2392 22 14 1618 16 14 2731 61 12 3007 49

Ctp 1 26 751 28 26 751 31 26 728 29 26 728 32
(46 tasks) 5 26 494 76 26 460 79 26 507 74 26 488 86

10 26 560 154 26 428 143 26 561 147 26 391 121
15 26 518 196 26 401 195 26 523 202 26 408 198
all 0 — — 0 — — 0 — — 0 — —

during pattern collection search and use a minimal improvement threshold [10]
of 0.5 (i.e., we only perform a local search step in the pattern collection search if
the fraction of samples for which the canonical heuristic value is improved is at
least 0.5). Similarly, in configuration “fop mip0.5”, we assume full observability
during pattern collection search and use a minimal improvement threshold of
0.5 as well. From the data in Table 2, we conclude that it is typically preferable
to search for better pattern collections than the trivial singleton pattern collec-
tions, and that assuming full observability during that search tends to improve
total time because the preprocessing time is significantly decreased, whereas as-
suming partial observability generates better patterns at a higher preprocessing
cost, but leads to faster (better informed) LAO* search.

5.4 Internal Comparison of FO-Det, FO-NDet, and PO-NDet

To determine the overall best PDB configuration, we compare the best configu-
rations of FO-Det, FO-NDet, and PO-NDet side by side in Table 3. For FO-Det
and FO-NDet, we use the configurations with summation over 15 belief state
samples, and for all three configurations, we use a minimal improvement thresh-
old of 0.5. We observe that the additional informedness of PO-NDet over the
more simplistic FO-Det and FO-NDet configurations mostly translates into fewer

node expansions as well as lower search and overall times. Although there is only
a small resulting increase in coverage, altogether PO-NDet appears dominant.

Table 2. Coverage (cov) and guidance (number of node expansions, exp), search times
(stm, in seconds), and total times (ttm, in seconds, including pattern collection search)
on commonly solved problems (39 in Fr, 11 in Blocks, 23 in Ctp) for different con-
figurations of the pattern collection search for PO-NDet.

PO-NDet
Domain steps 0 pop mip0.5 fop mip0.5

cov exp stm ttm cov exp stm ttm cov exp stm ttm

Fr 40 25278 3079 3111 70 5887 218 1058 73 5819 262 588
Blocks 13 6560 630 644 12 5343 423 673 12 6902 779 866
Ctp 26 526 9 15 23 461 4 862 26 480 5 314

OVERALL 79 32364 3718 3770 105 11691 645 2593 111 13201 1046 1768

Table 3. Coverage (cov) and guidance (number of node expansions, exp), search times
(stm, in seconds), and total times (ttm, in seconds, including pattern collection search)
on commonly solved problems (69 in Fr, 10 in Blocks, 26 in Ctp) for LAO* search
with best FO-Det, FO-NDet, and PO-NDet configuration.

Domain FO-Det sum15 mip0.5 FO-NDet sum15 mip0.5 PO-NDet fop mip0.5
cov exp stm ttm cov exp stm ttm cov exp stm ttm

Fr 70 40159 9330 10320 72 28938 9140 11327 73 26414 3851 6095
Blocks 14 1796 33 85 13 2558 59 113 12 1670 19 78
Ctp 26 607 281 849 26 607 270 1004 26 630 7 923

OVERALL 110 42562 9644 11254 111 32103 9469 12444 111 28714 3877 7096

5.5 Comparison to Delete Relaxation and Baseline

In order to assess how well our best PDB configuration (PO-NDet fop mip0.5)
does in comparison to an established technique (FF heuristic [12] under as-
sumption of full observability and determinization) and a trivial baseline (blind
heuristic), we provide a direct comparison in Table 4. We can conclude that
PDBs outperform FF and blind heuristic in the Fr and Ctp domains in terms
of coverage, guidance and runtime, whereas they perform slightly worse than FF
in the Blocks domain. A comparison to a cleverer delete-relaxation approach
like LUGs [4] that could shift the picture in favor of delete relaxation again, is
left for future work. We remark that we do not expect a completely reversed
picture with LUGs, since the PDB approach that is most comparable to the

FF approach under full observability and with determinization, namely FO-Det,
still leads to a higher coverage than FF (102 vs. 78 solved problems).

Table 4. Coverage (cov) and guidance (number of node expansions, exp), search times
(stm, in seconds), and total times (ttm, in seconds, including pattern collection search)
on commonly solved problems (16 in Fr, 6 in Blocks, 13 in Ctp) for LAO* search with
blind heuristic, FF heuristic under assumption of full observability and determinization,
and the best PDB configuration.

Domain blind FF PO-NDet fop mip0.5
cov exp stm=ttm cov exp stm=ttm cov exp stm ttm

Fr 16 18716 1337 47 4381 239 73 662 12 95
Blocks 6 15937 488 15 241 20 12 276 2 37
Ctp 13 36124 2128 16 13714 735 26 152 1 88

OVERALL 35 70777 3954 78 18336 993 111 1090 16 219

6 Conclusion and Future Work

We have demonstrated that abstraction heuristics can successfully guide LAO*
search for strong cyclic plans for partially observable nondeterministic planning
problems towards goal belief states, and that the guidance is at least compet-
itive with the guidance provided by a delete-relaxation heuristic. We argued
experimentally that preserving partial observability and nondeterminism in the
abstraction leads to more informative heuristics at the cost of more expensive
preprocessing. From a global perspective, the better accuracy of such heuristics
pays off with better overall planner performance.

Future work includes a comparison of our results to those of Bryce et al. [4]
that also takes their labelled uncertainty graph (LUG) into account as an efficient
data structure for the direct evaluation of belief states with a delete-relaxation
approach without going back to their constituent world states. Moreover, we
plan to investigate more realistic benchmark problems arising from robotic ap-
plications.

Acknowledgements. This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collaborative Research Cen-
ter “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14
AVACS, see http://www.avacs.org).

References

1. Bercher, P., Mattmüller, R.: A planning graph heuristic for forward-chaining ad-
versarial planning. In: Proceedings of the 18th European Conference on Artificial
Intelligence (ECAI 2008). pp. 921–922 (2008)

2. Bercher, P., Mattmüller, R.: Solving non-deterministic planning problems with
pattern database heuristics. In: Proceedings of the 32nd Annual Conference on
Artificial Intelligence (KI 2009). pp. 57–64 (2009)

3. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 35(8), 677–691 (1986)

4. Bryce, D., Kambhampati, S., Smith, D.E.: Planning graph heuristics for belief
space search. Journal of Artificial Intelligence Research 26, 35–99 (2006)

5. Bylander, T.: The computational complexity of propositional strips planning. Ar-
tificial Intelligence 69(1–2), 165–204 (1994)

6. Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, strong, and strong cyclic
planning via symbolic model checking. Artificial Intelligence 147(1–2), 35–84 (2003)

7. Culberson, J.C., Schaeffer, J.: Searching with pattern databases. In: Advances in
Artificial Intelligence. pp. 402–416. LNCS, Springer-Verlag (1996)

8. Fu, J., Ng, V., Bastani, F.B., Yen, I.L.: Simple and fast strong cyclic planning for
fully-observable nondeterministic planning problems. In: Proc. 22nd International
Joint Conference on Artificial Intelligence (IJCAI 2011). pp. 1949–1954 (2011)

9. Hansen, E.A., Zilberstein, S.: LAO*: A heuristic search algorithm that finds solu-
tions with loops. Artificial Intelligence 129(1–2), 35–62 (2001)

10. Haslum, P., Botea, A., Helmert, M., Bonet, B., Koenig, S.: Domain-independent
construction of pattern database heuristics for cost-optimal planning. In: Proc.
22nd AAAI Conference on Artificial Intelligence (AAAI 2007). pp. 1007–1012
(2007)

11. Helmert, M., Röger, G., Seipp, J., Karpas, E., Hoffmann, J., Keyder, E., Nissim,
R., Richter, S., Westphal, M.: Fast downward stone soup (planner abstract). In:
Seventh International Planning Competition (IPC 2011), Deterministic Part. pp.
38–45 (2011)

12. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research 14, 253–302 (2001)

13. Kissmann, P., Edelkamp, S.: Solving fully-observable non-deterministic planning
problems via translation into a general game. In: Proc. 32nd German Annual Con-
ference on Artificial Intelligence (KI 2009). LNCS, vol. 5803, pp. 1–8. Springer-
Verlag (2009)

14. Kuter, U., Nau, D.S., Reisner, E., Goldman, R.P.: Using classical planners to solve
nondeterministic planning problems. In: Proc. 18th International Conference on
Automated Planning and Scheduling (ICAPS 2008). pp. 190–197 (2008)

15. Littman, M.L.: Probabilistic propositional planning: Representations and complex-
ity. In: Proc. 14th National Conference on Artificial Intelligence (AAAI 1997). pp.
748–754. MIT Press (1997)

16. Mattmüller, R., Ortlieb, M., Helmert, M., Bercher, P.: Pattern database heuris-
tics for fully observable nondeterministic planning. In: Proc. 20th International
Conference on Automated Planning and Scheduling (ICAPS 2010). pp. 105–112
(2010)

17. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. Theoretical
Computer Science 84, 127–150 (1991)

18. Richter, S., Westphal, M., Helmert, M.: Lama 2008 and 2011 (planner abstract).
In: Seventh International Planning Competition (IPC 2011), Deterministic Part.
pp. 50–54 (2011)

19. Rintanen, J.: Complexity of planning with partial observability. In: Proc. 14th
International Conference on Automated Planning and Scheduling (ICAPS 2004).
pp. 345–354 (2004)

