
Component-based Abstraction Refinement for

Timed Controller Synthesis

Hans-Jörg Peter

Reactive Systems Group

Universität des Saarlandes

Saarbrücken, Germany

peter@cs.uni-sb.de

Robert Mattmüller

Foundations of Artificial Intelligence Group

Albert-Ludwigs-Universität Freiburg

Freiburg, Germany

mattmuel@informatik.uni-freiburg.de

Abstract

We present a novel technique for synthesizing con-
trollers for distributed real-time environments with
safety requirements. Our approach is an abstraction
refinement extension to the on-the-fly algorithm by
Cassez et al. from 2005 [7]. Based on partial com-
positions of some environment components, each re-
finement cycle constructs a sound abstraction that can
be used to obtain under- and over-approximations of
all valid controller implementations. This enables (1)
early termination if an implementation does not ex-
ist in the over-approximation, or, if one does exist in
the under-approximation, and (2) pruning of irrelevant
moves in subsequent refinement cycles. In our refine-
ment loop, the precision of the abstractions incremen-
tally increases and converges to all specification-critical
components.

We implemented our approach in a prototype syn-
thesis tool and evaluated it on an industrial benchmark.
In comparison with the timed game solver UPPAAL-

Tiga, our technique outperforms the nonincremental
approach by an order of magnitude.

1 Introduction

Establishing the correctness of real-time systems is a
main research goal in computer science. Model check-
ing and synthesis are two heavily studied formal ap-
proaches to automatically achieve this goal. While
model checking decides whether a system satisfies a lo-
gical property, synthesis derives implementations from
formal specifications that are correct by construction.

The reactive nature of embedded devices requires a
computational model that considers open rather than
closed systems. In contrast to the latter one, open

systems exhibit an input/output interface for interact-
ing with each other. The controller synthesis prob-
lem asks whether there exists an implementation of an
open system controller interacting with an open system
environment such that a given requirement is always
satisfied. Timed controller synthesis, where the envi-
ronment is given as a distributed real-time system, is
an interesting extension because it is both practically
relevant (see, e.g., [4, 19, 8]) and theoretically tractable
(see [22, 3, 12, 15]).

The increasing distributedness in the design of em-
bedded devices calls for a dense time model and gives
rise to the state space explosion problem. Synthesizing
a real-time controller for a complex distributed envi-
ronment is an inherently difficult task because of the
underlying dense time domain and the exponentially
growing discrete control structure. The main goal of
our approach is to reduce the complexity of a global
synthesis problem that considers all components to a
sequence of simpler local synthesis problems that con-
sider only some of the components.

The solution to each local synthesis problem yields
a sound approximation of all valid global controller
implementations which, in turn, enables early termi-
nation: if an implementation does not exist in an
over-approximation, or, if one does exist in an under-
approximation. Every sequence of local synthesis prob-
lems converges to the global problem that considers all
specification-critical components.

Even though in the worst case, our approach, over-
all, considers more components than the nonincremen-
tal synthesis problem (there might be a quadratic blow-
up), we provide pruning rules that can be used to sig-
nificantly reduce the workload of the local problems.
Indeed, our experimental results show that even in
those cases where the global controller must be syn-
thesized, the amortized costs of our approach are less

a b ⊤

⊥

α, x > 2

x ≤ 2

(a) Component P

c

d

α

(b) Component Q

Figure 1. Network of two reactive realtime
components P and Q which synchronize on
action α.

than the work of synthesizing a global controller in the
first place.

Figure 1 shows two reactive real-time components
P and Q. Environment and controller transitions are
denoted by dashed and solid lines, respectively. Com-
ponent P comprises the locations a, b, ⊤ (representing
the safe location), and ⊥ (representing the error lo-
cation). Component Q comprises the locations c and
d. Both components synchronize on action α: if the
clock x is greater than 2, then the controller can exe-
cute the transition from b to ⊤ in P if and only if he
also executes d to c in Q. Now, the controller synthesis
problem is to decide whether there is an execution of
controller transitions such that the environment never
reaches the error location ⊥. If the environment is
quick enough (i.e., as long as x ≤ 2), she can enforce
⊥ independently of all controller transitions. The en-
vironment could even succeed if we give more power to
the controller by allowing the execution of α in P with-
out requiring that Q is in d. Hence, for this example
it suffices to consider P alone and not the composition
with Q to decide the controller synthesis problem.

Related Work. Automatic program synthesis has
a long tradition in computer science that goes back to
Church [9], Büchi, and Landweber [6] in the 1960s. In
the 1990s, Asarin, Maler, Pnueli, and Sifakis gave a
game-theoretic formulation of the controller synthesis
problem [22, 3] in the timed automata framework by
Alur and Dill [2]. A first on-the-fly method for solv-
ing timed games was proposed by Tripakis and Altisen
which, however, requires an expensive preprocessing
step [23, 1]. As a remedy to this problem, Cassez et
al. proposed a fully on-the-fly timed game solving al-
gorithm that combines the backward construction for
computing the winning states with a forward reacha-
bility analysis [7, 4]. Our work is a direct extension of

this approach which furthermore exploits the composi-
tional nature of the system specification.

Abstraction refinement approaches were heavily
studied in the model checking domain. A well-known
technique called counter example guided abstraction re-
finement [10] starts with a simple initial abstraction
of the global system and, in a refinement loop, in-
crementally concretizes relevant parts of the abstrac-
tion until a sound model checking result can be estab-
lished. Hereby, the refinement is guided by abstract
(i.e., potentially spurious) error traces. Henzinger et
al. adapted this idea to controller synthesis [17] where
abstractions are defined over the game states, counter
examples are abstract strategies, and refinement corre-
sponds to the splitting of abstract game states. De Al-
faro and Roy introduced three-valued abstractions [13]
where the refinement is guided by the difference be-
tween an under- and over-approximation of the game
states. In contrast to these two approaches that only
consider abstractions over game structures, our ap-
proach obtains abstractions from partial compositions
of timed game automata [22, 3]. Because of the syntac-
tic nature of the composition operator of that model [2],
we also require a notion of modality in the syntax. We
therefore extend timed game automata by distinguish-
ing between may- and must-transitions in the style of
[20, 18].

Our component-based abstraction refinement idea
resembles other incremental composition techniques,
e.g., for minimizing finite state systems [16]. Dräger
et al. investigate using abstractions from partial com-
positions as a basis for approximating error distances
for directed model checking [14].

Contribution. In this paper, we present a novel
technique for synthesizing controllers for real-time en-
vironments with safety requirements. The contribu-
tions of the paper are the following.

• We propose a new technique that reduces the com-
plex problem of synthesizing a global controller for
a distributed real-time environment to a sequence
of simpler local synthesis problems.

• To that end, we introduce a new composition-
based notion of modality in networks of timed
game automata enabling a sound over- and under-
approximation of all valid global controller imple-
mentations.

• We give an automatic abstraction refinement al-
gorithm that incrementally concretizes these ap-
proximations converging to the precise set of all
valid controller implementations.

• We provide empirical evidence of the effectiveness
of our approach by comparing it with the leading
timed controller synthesis tool UPPAAL-Tiga.

The rest of this paper is structured as follows. Sec-
tion 2 recalls the game-theoretic fundamentals of timed
controller synthesis. Section 3 describes how under-
and over-approximations can be obtained from partial
compositions. Based on that, Section 4 proposes an ab-
straction refinement algorithm that computes a chain
of approximations with increasing precision. In Sec-
tion 5, we report on experimental results with a pro-
totype implementation of our approach and the tool
UPPAAL-Tiga. We conclude with an outlook in Sec-
tion 6.

2 Controller Synthesis as a Game

Synthesizing a controller means finding a winning
strategy in a two-player, turn-based, zero-sum game,
where a controller plays against a hostile environ-
ment. We say that the environment is the exists-player
(player ∃) since her goal is to eventually reach some
error state on some computation path. Dually, we say
that the controller is the forall-player (player ∀) since
his goal is to always avoid any error state on all com-
putation paths.

2.1 Timed Games

Timed Game Automata. We use timed game
automata to model reactive environment components.
A timed game automaton (TGA) [2, 22, 3] A is a tuple
(L, I, Σ, ∆, χ, E), where L is a finite set of locations,
I ⊆ L is a set of initial locations, Σ is a finite set
of actions that is partitioned into a set of controller
actions Σ∀ and environment actions Σ∃, ∆ ⊆ (L×Σ×
C(χ)× 2χ ×L) is the set of transitions, χ is a finite set
of real valued clocks, and E ⊆ L is a (possibly empty)
set of error locations.

The clock constraints ϕ ∈ C(χ) are of the form

ϕ = ⊤ | x ≤ c | c ≤ x | x < c | c < x | ϕ1 ∧ ϕ2,

where x is a clock in χ and c is a constant in N0. A
clock valuation ~t : χ → R≥0 assigns a nonnegative value
to each clock and can also be represented by a |χ|-

dimensional vector ~t ∈ R
χ
≥0

. We use R = 2R
χ

≥0 to

denote the set of all clock valuations. We write ~t[λ :=
0], λ ⊆ χ, for clock resets and ~t + d, d ∈ R≥0, for
uniform time elapse.

Communicating components synchronize on shared
actions. Intuitively, components synchronize on an ac-
tion a iff they emit a at the same time. Formally, the

composition is defined as a binary associative opera-
tor ‖ [2]. Two given TGA A1 = (L1, I1, Σ1, ∆1, χ1, E1)
and A2 = (L2, I2, Σ2, ∆2, χ2, E2) with disjoint clock
sets χ1 ∩ χ2 = ∅ can be composed to a new TGA
A = A1‖A2 such that A = (L1 × L2, I1 × I2, Σ1 ∪
Σ2, ∆, χ1 ∪ χ2, E), where E = E1 × L2 ∪ L1 × E2 and
the set of transitions ∆ contains

• for a ∈ Σ1∩Σ2: 〈(l1, l2), a, ϕ1∧ϕ2, λ1∪λ2, (l
′
1, l

′
2)〉

if 〈l1, a, ϕ1, λ1, l
′
1〉 ∈ ∆1 and 〈l2, a, ϕ2, λ2, l

′
2〉 ∈ ∆2,

• for a ∈ Σ1 \ Σ2, l2 ∈ L2: 〈(l1, l2), a, ϕ1, λ1, (l
′
1, l2)〉

if 〈l1, a, ϕ1, λ1, l
′
1〉 ∈ ∆1, and

• for a ∈ Σ2 \ Σ1, l1 ∈ L1: 〈(l1, l2), a, ϕ2, λ2, (l1, l
′
2)〉

if 〈l2, a, ϕ2, λ2, l
′
2〉 ∈ ∆2.

A set of communicating components, represented as
TGA, form a component network (or just network)
N = {C1, . . . , Cn}. We say that N = C1‖ . . . ‖Cn is
N ’s TGA. A network M = {C1, . . . , Cm} is a sub-
network of N iff M ⊆ N . In this case we say that
E = N \M is the neighborhood of M w.r.t. N . When
we refer to the subnetwork NE of N , we mean all com-
ponents whose set of error locations is not empty.

Timed Game Structures. The semantics of timed
game automata is defined in terms of timed game struc-
tures. A timed game structure (TGS) G is a tuple
(S, S0, Γ∀, Γ∃) where S is an infinite set of states, S0 ⊆
S are the initial states, and Γp ⊆ S × (Σp ∪ R≥0) × S,
p ∈ {∀, ∃}, are the timed moves of the players.

A timed game automaton (L, I, Σ, ∆, χ, E) induces
a timed game structure G = (L × R, I × {~0}, Γ∀, Γ∃),
where

Γp =
{

(s, d, s′) | ∃d ≥ 0 : s′ = s + d
}

∪
{

((l,~t), a, (l′,~t′)) | ∃〈l, a, ϕ, λ, l′〉 ∈ ∆ :

a ∈ Σp ∧ ~t |= ϕ ∧ ~t′ = ~t[λ := 0]
}

,

for p ∈ {∀, ∃}. Note that for a game state s = (l,~t) ∈ S
and a delay d ∈ R≥0, we write s + d for (l,~t + d).

Projections. Let M ⊆ M′ ⊆ N , w.l.o.g. M =
{C1, . . . , Ck}, M

′ = M∪{Ck+1, . . . , Cm}, and let M =
(L, I, Σ, ∆, χ, E) and M ′ = (L′, I ′, Σ′, ∆′, χ′, E′) be the
TGA of M and of M′, respectively, and let G = (L ×
R, I ×{~0}, Γ∀, Γ∃) and G′ = (L′×R′, I ′×{~0}, Γ′

∀, Γ
′
∃),

S = L×R, S′ = L′×R′, be the TGS of M and M ′. We
define projections of locations, constraints, clock resets,
clock valuations, sets of states, and sets of transitions
as follows:

l′↓M := (l′1, . . . , l
′
k)

for l′ = (l′1, . . . , l
′
k, l′k+1, . . . , l

′
m) ∈ L′

ϕ′↓M :=

ϕ′
1↓M ∧ ϕ′

2↓M if ϕ′ = ϕ′
1 ∧ ϕ′

2

ϕ′ if ϕ′ = x ⊲⊳ c ∧ x ∈ χ

⊤ if ϕ′ = x ⊲⊳ c ∧ x /∈ χ

⊤ if ϕ′ = ⊤

for ϕ′ ∈ C(χ′)

λ′↓M := λ′ ∩ χ for λ′ ⊆ χ′

~t′↓M := (x1, . . . , xk)

for ~t′ = (x1, . . . , xk, xk+1, . . . , xm) ∈ R
χ′

≥0

s′↓M := (l′↓M,~t′↓M) for s′ = (l′,~t′) ∈ S′

∆′′↓M := {〈l1, a, ϕ, λ, l2〉 ∈ ∆ | 〈l′1, a
′, ϕ′, λ′, l′2〉 ∈ ∆′′ ∧

l1 = l′1↓M ∧ a = a′ ∧ ϕ ≡ ϕ′↓M ∧

λ = λ′↓M ∧ l2 = l′2↓M} for ∆′′ ⊆ ∆′

Γ′′↓M := {(s1, u, s2) ∈ S × (Σp ∪ R≥0) × S |

(s′1, u
′, s′2) ∈ Γ′′ ∧ s1 = s′1↓M ∧ u = u′ ∧

s′2 = s′2↓M} for Γ′′ ⊆ Γ′
p, p ∈ {∀, ∃}

⌈S′′↓M⌉ := {s ∈ S | ∃s′ ∈ S′′ : s = s′↓M} for S′′ ⊆ S′

⌊S′′↓M⌋ := {s ∈ S | (∃s′ ∈ S′′ : s = s′↓M) ∧

(∀s′ ∈ S′ : s = s′↓M ⇒ s′ ∈ S′′)}

for S′′ ⊆ S′

Projected set inclusion and set subsumption are two
relations over sets of states. For two sets of states S
and S′ we define

S ⊑M S′ iff S ⊆ ⌊S′↓M⌋ and

S ⊒M S′ iff S ⊇ ⌈S′↓M⌉.

Strategies and Outcomes. A strategy is a func-
tion that determines a particular player’s decisions dur-
ing the course of a game. In general, a strategy is
defined as a mapping from a history of events to a
concrete game move. However, in the timed controller
synthesis setting with safety requirements under com-
plete information, it is sufficient to consider state-based
(or memoryless) strategies [22, 3, 12]. Formally, a
memoryless strategy for player p is a partial function
fp : S → Σp ∪ {⊥} that maps a game state either to
an (active) action move of p or to ⊥ representing a
(passive) wait move.

The notion of an outcome defines the combina-
tion of two strategies f∃ and f∀. Formally, the set
Outcome(f∃, f∀) ⊆ S comprises those states that are
eventually visited when player ∃ sticks to f∃ and
player ∀ sticks to f∀.

Reachability Games. Let G = (S, S0, Γ∀, Γ∃) be
a timed game structure and K ⊆ S a set of goal states,
then (G, K) represents a reachability game. Player ∃

wins (G, K) if and only if she can enforce a visit to K.
More formally, player ∃ wins iff

∃f∃ ∀f∀ : Outcome(f∃, f∀) ∩ K 6= ∅.

In the following, w.l.o.g.1, we will only consider reach-
ability games for player ∃.

2.2 Solving Timed Games

Solving a reachability game (G, K) means comput-
ing the set of states from which player ∃ has a strategy
to enforce an outcome that eventually visits a state in
K. Before we come to the actual solving algorithm, we
formalize the notion of controllability.

Definition 2.1 For a timed game structure G =
(S, S0, Γ∀, Γ∃), the timed enforceable predecessor op-
erator [22, 3] π : 2S → 2S for player ∃ is defined as

π(X) = πa(X) ∪ πt(X),

where πa is the active timed enforceable predecessor op-
erator

πa(X) =
{

s ∈ S | ∃(s, u, s′) ∈ Γ∃ : u ∈ Σ∃ ∧ s′ ∈ X
}

and πt is the passive timed enforceable predecessor op-
erator

πt(X) =
{

s ∈ S |

∃d ≥ 0 : s + d ∈ X ∧

∀0 ≤ d′ < d : ∀(s + d′, c, s′) ∈ Γ∀ :

c ∈ Σ∀ ⇒ s′ ∈ X
}

.

Note that with this definition of π we constitute an
asymmetric game semantics, i.e., we prioritize the en-
vironment in situations where both players can execute
an active move. We believe that this is a more natu-
ral view in the sense that one is always interested in
controller implementations that consider a worst-case
behavior of the environment. It was shown in [22, 3]
and later in [7] that π can be effectively computed us-
ing finite abstractions (such as clock regions or zones)
of the infinite timed state space.

We define those states from which player ∃ has a
winning strategy to eventually enforce K as the ∃-
attractor of K. Thus, a valid controller implementa-
tion must avoid any state from the ∃-attractor of the
error states. For a reachability game (G, K), the com-
putation of the ∃-attractor Attr(G, K) is carried out by
iteratively applying π as a least fixed point construc-
tion on K [22, 3, 12]. Algorithm 1 gives a definition in
pseudo code.

1Reachability objectives for the controller or safety objectives
for the environment are dual forms of the case considered here.

Algorithm 1 Fixed point algorithm for computing the
∃-attractor of a set of goal states K.

A0 := K
n := 0
repeat

n := n + 1
An := An−1 ∪ π(An−1)

until An = An−1

Attr(G, K) := An

Player ∃ wins (G, K) if and only if S0∩Attr(G, K) 6= ∅.
There exists a valid controller implementation if and
only if player ∃ does not win. In this case, a winning
strategy for the controller (and therefore also a con-
troller implementation) can be directly derived from
S \ Attr(G, K).

A real-time environment, given as a network of
timed game automata N = {C1, . . . , Cn}, induces
a reachability game Game(N) = (G, K) such that
G is the game structure induced by N ’s TGA
(L, I, Σ, ∆, χ, E) and K = E × R is the set of N ’s
error states.

Theorem 2.1 [22, 3] The controller synthesis problem
for reactive real-time environments, given as networks
of timed game automata with safety requirements, is
decidable.

The following lemma states that if we add a compo-
nent C to a network such that adding C restricts the
moves of player ∀ and does not restrict the moves of
player ∃, then the winning possibilities of player ∃ are
independent of C.

Lemma 2.2 For a network M and a component P /∈
M, let G = (S, S0, Γ∀, Γ∃) be M’s TGS, G′ =
(S′, S′

0, Γ
′
∀, Γ

′
∃) be M∪ {C}’s TGS, K ′ be M∪ {C}’s

error states, and K = ⌊K ′↓M⌋. If C’s and M’s ∃-
actions are disjoint, i.e., ΣM

∃ ∩ ΣC
∃ = ∅, and Γ′

∀↓M ⊆
Γ∀, then

Attr(G, K) ⊑M Attr(G′, K ′).

Proof: Let Ai and A′
i be the attractor sets after the

ith iteration of Algorithm 1 of (G, K) and (G′, K ′), re-
spectively. We show Ai ⊆ ⌊A′

i↓M⌋, for any i ∈ N0, by
induction over i, i.e., over the construction of Attr. Let
L′ be set of C’s locations and R′ the set of all clock
valuations of the clocks in C that are not in M.
For the base case, if (l1,~t1) ∈ K is a goal state, then, by
definition of error and goal states, ((l1, l2), (~t1,~t2)) ∈
K ′ is also a goal state, for any l2 ∈ L′ and ~t2 ∈ R′.
Hence, A0 = K = ⌊K ′↓M⌋ = ⌊A′

0↓M⌋.
For the induction step i 7→ i + 1 we show that Ai ⊆

⌊A′
i↓M⌋ implies Ai+1 ⊆ ⌊A′

i+1↓M⌋. Assume ∀(l1,~t1) ∈

Ai : ∀(l2,~t2) ∈ L′ × R′ : ((l1, l2), (~t1,~t2)) ∈ A′
i and let

(l1,~t1) ∈ Ai+1 = Ai ∪ π(Ai) = Ai ∪ πa(Ai) ∪ πt(Ai) be
arbitrarily chosen. We show that ∀(l2,~t2) ∈ L′ × R′ :
((l1, l2), (~t1,~t2)) ∈ A′

i+1 by distinguishing three cases:

(1) If (l1,~t1) ∈ Ai, then, by i.h., ∀(l2,~t2) ∈ L′ × R′ :
((l1, l2), (~t1,~t2)) ∈ A′

i ⊆ A′
i+1.

(2) If (l1,~t1) ∈ πa(Ai) is an active enforceable predeces-
sor, then ∃((l1,~t1), u, (l′1,~t

′
1)) ∈ Γ∃ : (l′1,~t

′
1) ∈ Ai ∧ u ∈

Σ∃. From ΣM
∃ ∩ΣC

∃ = ∅ follows that if there is a move
((l1,~t1), u, (l′1,~t

′
1)) ∈ Γ∃, u ∈ ΣM

∃ , then there is also
a move (((l1, l2), (~t1,~t2)), u, ((l′1, l2), (~t

′
1,~t2))) ∈ Γ′

∃, for
all l2 ∈ L′ and all ~t2 ∈ R′. We apply this fact to each
state in A′

i, for which we know, by i.h., ∀(l1,~t1) ∈ Ai :
∀(l2,~t2) ∈ L′ × R′ : ((l1, l2), (~t1,~t2)) ∈ A′

i, to finally
obtain ((l1, l2), (~t1,~t2)) ∈ πa(A′

i) ⊆ π(A′
i) ⊆ A′

i+1.

(3) If (l1,~t1) ∈ πt(Ai) is a passive enforceable prede-
cessor, then ∃d : (l1,~t1 + d) ∈ Ai ∧ ∀d′ < d : ∀((l1,~t1 +
d′), c, (l′1,~t

′
1)) ∈ Γ∀ : c ∈ Σ∀ ⇒ (l′1,~t

′
1) ∈ Ai. From

Γ′
∀↓M ⊆ Γ∀ follows that if there was no spoiling ∀-move

((l1,~t1), c, (l
′
1,~t

′
1)) ∈ Γ∀ : c ∈ Σ∀, then there is also no

spoiling ∀-move (((l1, l2), (~t1,~t2)), c, ((l
′
1, l

′
2), (~t

′
1,~t

′
2))) ∈

Γ′
∀, for all (l2,~t2), (l

′
2,~t

′
2) ∈ L′ × R′. We apply this

fact to each state in A′
i, for which we know, by i.h.,

∀(l′1,~t1) ∈ Ai : ∀(l2,~t2) ∈ L′ × R′ : ((l′1, l2), (~t1,~t2)) ∈
A′

i, to finally obtain ((l1, l2), (~t1,~t2)) ∈ πt(A′
i) ⊆

π(A′
i) ⊆ A′

i+1. �

Intuitively, once a state of a subnetwork M ⊆ M′ is
winning, it remains winning in the context of any non-
influencing neighborhood M′ \M.

Dually, the following lemma states that if we add a
component C to a network such that adding C restricts
the moves of player ∃ and does not restrict the moves
of player ∀, then the winning possibilities of player ∀
are independent of C.

Lemma 2.3 For a network M and a component P /∈
M, let G = (S, S0, Γ∀, Γ∃) be M’s TGS, G′ =
(S′, S′

0, Γ
′
∀, Γ

′
∃) be M∪ {C}’s TGS, K ′ be M∪ {C}’s

error states, and K = ⌈K ′↓M⌉. If C’s and M’s ∀-
actions are disjoint, i.e., ΣM

∀ ∩ ΣC
∀ = ∅, and Γ′

∃↓M ⊆
Γ∃, then

Attr(G, K) ⊒M Attr(G′, K ′).

The proof is analogous to the one from Lemma 2.2.
From a practical point of view, solving a timed game

by only computing the attractor set has the huge dis-
advantage that potentially many forward unreachable
(and therefore irrelevant) states are considered in the
backward construction. As a remedy to this problem,
the authors of [7] proposed an efficient on-the-fly timed
game solving algorithm that extends the classic pure
backward approach by combining it with a forward

reachability analysis, ensuring that only forward reach-
able states are considered. Here, the attractor set con-
struction alternates between forward (post) steps that
explore new reachable states and backward (pre) steps
that back-propagate winning information. Thereby, all
pre-steps are intersected with the so-far known reach-
able state space. In our approach, we can adapt this
on-the-fly algorithm for solving the local sub-games.

3 Abstract Timed Games

In this section, we describe how to obtain sound ab-
stractions of the global game, that considers all com-
ponents, from local games, that consider only some
components. The winning possibilities of a particular
player depend on all (her and her opponent’s) moves
in the game. The set of winning states of player p de-
creases if we either (1) remove some moves that are
controllable by p or (2) add additional moves that are
controllable by her opponent. Using this idea, by priv-
ileging (strictly) one of the players, we can systemati-
cally under- or over-approximate the attractor set.

In Section 3.1, we define how a partial composition
induces an under- and over-approximation of the moves
of the players which, in turn, are used in Section 3.2 to
obtain sound attractor set approximations.

3.1 Modal Timed Game Automata

In the style of [20, 18], we introduce an extension
to the classic definition of timed game automata which
allows us to distinguish between transitions that might
be available and transitions that are surely available
representing under- and over-approximations of the
moves of the players in the game.

Definition 3.1 A modal timed game automaton
(MTGA) is a tuple M = (L, I, Σ, ∆may , ∆must , χ, E)
with ∆must ⊆ ∆may and (L, I, Σ, ∆may , χ, E) and
(L, I, Σ, ∆must , χ, E) are timed game automata, where
∆may is the set of transitions that might be available
(may-transitions) and ∆must is the set of transitions
that are surely available (must-transitions).

For short, we write Mmay = (L, I, Σ, ∆may , χ, E) and
Mmust = (L, I, Σ, ∆must , χ, E) to refer to M ’s may and
must TGA, respectively.

The notion of networks extends from TGA to
MTGA in a straightforward manner. The modal com-
position operator, however, slightly extends the non-
modal definition.

Let M1 = (L1, I1, Σ1, ∆
may

1 , ∆must
1 , χ1, E1) and

M2 = (L2, I2, Σ2, ∆
may

2 , ∆must
2 , χ2, E2) be two MTGA

with disjoint clock sets χ1 ∩ χ2 = ∅. Further-
more, let E be the neighborhood of M1 and M2

that contains the remaining components which rep-
resent potential synchronization partners. Then, M1

and M2 can be composed to a new MTGA M =
(L, I, Σ, ∆may , ∆must , χ, E) denoted as M = M1‖EM2

such that Mmay = Mmay

1 ‖Mmay

2 and the set of must-
transitions ∆must is the largest subset of ∆may that
only contains transitions with actions not emitted by
any component from E :

∆must =
{

〈l, a, ϕ, λ, l′〉 ∈ ∆may | ∀C ∈ E : a /∈ ΣC
}

where ΣC stands for the set of component C’s actions.
The must-transitions of a parallel composition of

two components comprise those transitions that are
surely contained in any further parallel composition
(since the necessary global synchronization criterion
is already satisfied). The may-transitions of a paral-
lel composition of two components that are not must
can disappear in a further composition (since it is yet
unclear whether the necessary global synchronization
criterion will be completely satisfied). The following
lemma states this observation more formally and fol-
lows directly from the definitions of ∆must and ∆may .

Lemma 3.1 For a subnetwork M and a component
C /∈ M, if M is M’s MTGA and M ′ is M ∪ {C}’s
MTGA, then ∆must

M ⊆ ∆must
M ′ ↓M and ∆may

M ′ ↓M ⊆
∆may

M .

Informally, Lemma 3.1 states that we increase the pre-
cision when we add new components to a subnetwork
M in the sense that M’s MTGA’s may-transitions de-
crease and M’s MTGA’s must-transitions increase.

a

b c

α β

(a) P

d

e

α

(b) Q

f

g

β

(c) R

a, d

b, e c, d

α β

(d) P‖{R}Q’s may TGA

Figure 2. Network {P, Q, R}.

Figure 2 shows a network N = {P, Q, R}. The may
TGA of the composition of P and Q is shown in Fig-
ure 2(d). Here, α is also a must-transition since R does
not emit α.

3.2 Attractor Set Approximation

When we compose a component network M which
is part of a larger network N , then M’s MTGA
M = (L, I, Σ, ∆may , ∆must , χ, E), w.r.t. the neighbor-
hood E = N \M, represents an abstraction of N in the
sense that we can use M ’s modal moves to approximate
the attractor sets of the players.

More precisely, we obtain an under-approximation
of the ∃-attractor if (1) player ∀ chooses his moves
from ∆may and (2) player ∃ chooses her moves from
∆must . Dually, we obtain an over-approximation of
the ∃-attractor if (1) M contains all error components
of N , (2) player ∀ chooses his moves from ∆must , and
(3) player ∃ chooses her moves from ∆may .
In the following, let
• (S, S0, Γ

may

∀ , Γmay

∃) be Mmay ’s TGS and
• (S, S0, Γ

must
∀ , Γmust

∃) be Mmust ’s TGS.
Formally, M induces

1. a weakened reachability game
WGameN (M) = ((S, S0, Γ

may

∀ , Γmust
∃), E ×R) ;

2. a strengthened reachability game
SGameN (M) = ((S, S0, Γ

must
∀ , Γmay

∃), E ×R).

Lemma 3.2 For a network N and a subnetwork M ⊆
N , if C ∈ N \M, then

Attr(WGameN (M)) ⊑M Attr(WGameN (M∪ {C})).

Proof: Let (G, K) = WGameN (M) and (G′, K ′) =
WGameN (M ∪ {C}). From the definition of ‖ fol-
lows K ⊑M K ′. From the definitions of WGame and
must-moves we obtain ΣM

∃ ∩ ΣC
∃ = ∅, and according

to Lemma 3.1 we deduce Γ′
∀↓M ⊆ Γ∀. Hence, from

Lemma 2.2 it immediately follows that Attr(G, K) ⊑M

Attr(G′, K ′). �

Lemma 3.3 For a network N and a subnetwork M ⊆
N , if C ∈ N \M, then

Attr(SGameN (M)) ⊒M Attr(SGameN (M∪ {C})).

The proof is analogous to the one of Lemma 3.2.

Lemma 3.4 For a network N ,

Attr(SGameN (N))

= Attr(WGameN (N))

= Attr(Game(N)).

Proof: By definition, the neighborhood of the global
network is empty: E = N \ N = ∅. Hence, from the
definition of MTGA in Section 3.1, we can conclude
that the game structures induced by SGameN (N),
WGameN (N), and Game(N) coincide since N ’s MTGA
coincides with N ’s TGA. �

4 Abstraction Refinement

In this section, we describe the abstraction refine-
ment loop of our approach that computes a chain of
attractor set approximations with increasing precision.

4.1 Refinement Loop

For an environment given as the global component
network N = {C1, . . . , Cm}, during the course of the
refinement process, we consider chains of subnetworks
Mi of the form

M0 (M1 (. . . (Mn = N .

On each refinement cycle i, 0 ≤ i ≤ n, we obtain
• an under-approximation
⌊Ai⌋ = Attr(WGameN (Mi)) and

• an over-approximation
⌈Ai⌉ = Attr(SGameN (Mi))

of the global ∃-attractor A = Attr(Game(N)) as de-
scribed in Section 3. According to Lemmas 3.2, 3.3,
and 3.4, these attractor set chains are of the form

⌊A0⌋ ⊑M0
⌊A1⌋ ⊑M1

. . . ⊑Mn−1
⌊An⌋ = A and

⌈A0⌉ ⊒M0
⌈A1⌉ ⊒M1

. . . ⊒Mn−1
⌈An⌉ = A.

Initially, we select M0 = NE . Note that for only ob-
taining under-approximations, M0 ⊆ NE suffices. In
refinement cycle i, we extend Mi by other components
from N \ Mi. Hereby, the selection of the compo-
nents is guided by a refinement heuristics that takes
abstract (i.e., potentially spurious) strategies into ac-
count. While spurious ∃-strategies are used to shrink
⌈Ai⌉, spurious ∀-strategies are used to enlarge ⌊Ai⌋.
The loop terminates if either

1. player ∃ can win WGameN (Mi)
(i.e., there surely does not exist a controller), or

2. player ∃ cannot win SGameN (Mi)
(i.e., there surely exists a controller).

Indeed, these criteria suffice for soundness:

Theorem 4.1 The following two statements hold for
any subnetwork Mi:

1. If ⌊S0↓Mi
⌋ ∩ ⌊Ai⌋ 6= ∅, then S0 ∩ A 6= ∅.

2. If ⌈S0↓Mi
⌉ ∩ ⌈Ai⌉ = ∅, then S0 ∩ A = ∅.

Proof: Case 1. Let ⌊S0↓Mi
⌋ ∩ ⌊Ai⌋ 6= ∅. Since

⌊Ai⌋ ⊑Mi
⌊An⌋ = A by Lemmas 3.2 and 3.4, by defini-

tion we get ⌊Ai⌋ ⊆ ⌊A↓Mi
⌋. Thus, ⌊S0↓Mi

⌋∩⌊A↓Mi
⌋ 6=

∅, say s ∈ ⌊S0↓Mi
⌋∩⌊A↓Mi

⌋. Since s ∈ ⌊S0↓Mi
⌋, there

is a t ∈ S0 such that t↓Mi
= s. Since s ∈ ⌊A↓Mi

⌋, for
all s′ with s′↓Mi

= s, also s′ ∈ A has to hold. In par-
ticular, t ∈ A, hence t ∈ S0 ∩ A 6= ∅.
Case 2. Assume for contradiction that s ∈ S0∩A. Since
s ∈ S0, by definition we have s↓Mi

∈ ⌈S0↓Mi
⌉. Since

s ∈ A and because, by Lemmas 3.3 and 3.4, ⌈Ai⌉ ⊒Mi

⌈An⌉ = A (i.e., by definition, ⌈Ai⌉ ⊇ ⌈A↓Mi
⌉), we get

s↓Mi
∈ ⌈A↓Mi

⌉ ⊆ ⌈Ai⌉. Thus, s↓Mi
∈ ⌈S0↓Mi

⌉∩⌈Ai⌉,
i.e., ⌈S0↓Mi

⌉ ∩ ⌈Ai⌉ 6= ∅, a contradiction. �

The following theorem guarantees termination of the
refinement loop and convergence with the global reach-
ability game.

Theorem 4.2 The component-based abstraction re-
finement loop terminates and converges to the global
reachability game.

Proof: Since there are only finitely many compo-
nents, Mn eventually converges to N , for a finite
n ∈ N0, and we end up with the global reachability
game. From Lemma 3.4 it follows that the attractor
sets ⌈An⌉ = SGameMn

(N), ⌊An⌋ = WGameMn
(N),

and A = Game(Mn) coincide. Then, it is easy to see
that exactly one the two termination criteria must hold.
�

4.2 Component Selection

The speed of the convergence of the attractor set
approximations heavily depends on the selection of the
components for refinement. In this section, we specify
basic criteria for the selection of candidate transitions
to refine on.

In the following, let Mi ⊆ N be the subnetwork of
the ith refinement cycle, and let ⌊Ai⌋ and ⌈Ai⌉ be the
corresponding under- and over-approximations of the
global ∃-attractor A, respectively. For two game states
s = (l,~t) and s′ = (l′,~t′), which are connected by a
∃-move (s, u, s′) ∈ Γ∃, u ∈ Σ∃ ∪ R≥0,
• in order to enlarge ⌊Ai⌋,

we select s /∈ ⌊Ai⌋ and s′ ∈ ⌊Ai⌋ ;
• in order to shrink ⌈Ai⌉,

we select s ∈ ⌈Ai⌉ and s′ ∈ ⌈Ai⌉ .
Now, we select a pure may-transition 〈l, a, ϕ, λ, l′′〉 ∈
∆may \ ∆must such that
• if l = l′ and ∃d > 0 : ~t′ = ~t + d, then a ∈ Σ∀ ;
• if l 6= l′, then a ∈ Σ∃ .

Once a candidate transition with action a is chosen,
we select a component C ∈ N \Mi with a ∈ ΣC and
refine the subnetwork such that Mi+1 = Mi ∪ {C}.

a b

⊤

⊥
x ≤ 3

β

6 ≤ x ≤ 7

α,

x > 8

(a) Component P

c

d

β,

y := 0

α,

y ≤ 4

(b) Component Q

x

y

3 6 7 8

∃

∀

∃

(c) Moves at loc. b in P

x

y

∃
∀

∃

3 6 7 8

4

(d) Moves at loc. (b, d) in P‖Q

Figure 3. Enlargement of the under

approximation of the ∃attractor by con
cretizing transition α which is controlled by
player ∀.

Figure 3 shows an example refinement on transition
α. If we consider component P alone (as abstraction
of the network {P, Q}), the controller is spuriously too
powerful by allowing him to take transition α whenever
P is in location b and 6 ≤ x ≤ 7. Only after the re-
finement (i.e., the composition with component Q) the
environment gets a chance to circumvent α to enforce
location ⊥.

4.3 Pruning Irrelevant Moves

In the construction of the attractor set approxima-
tions ⌊Ai⌋ and ⌈Ai⌉, i > 0, we can use the intermediate
results of the preceding refinement cycle ⌊Ai−1⌋ and
⌈Ai−1⌉ for pruning of irrelevant moves. We identify a
move (s, a, s′) ∈ Γ∀ ∪ Γ∃ as irrelevant if either

• a ∈ Σ∀ and s′↓Mi−1
∈ ⌊Ai−1⌋ or

• a ∈ Σ∃ and s′↓Mi−1
/∈ ⌈Ai−1⌉.

Irrelevant moves do not need to be considered in any
attractor set construction because they lead to game
states that are already known to be winning for the
opponent.

Station 1 Station 2 Station 3

Figure 4. Gear Production Stack (GPS) with
three stations and five subprocessing units
each.

5 Benchmarks

We implemented our approach as a prototype tool
and evaluated it on a benchmark based on a case
study from our industrial partners BPS-IT Solutions
and META-LEVEL Software AG. We compared the
results with those produced by the timed game solver
UPPAAL-Tiga [4]. In our prototype, the actual local
attractor set construction is implemented according to
the forward/backward approach suggested in [7]. All
low-level clock zone operations were implemented using
the UPPAAL-DBM library [5].

The investigated case study represents a Gear Pro-
duction Stack2 (GPS) which is depicted in Figure 4.
The pipeline-like architecture sequentializes a series of
stations, each specialized in a certain workpiece pro-
cessing method. When a workpiece is loaded into the
machine it first arrives at station 1. After some time,
station 1 finishes and the workpiece is transported to
station 2. After station 2 finishes processing, the piece
is transported to station 3, and so on. In the extended
version of the benchmark, each station comprises five
additional sub-processing units, represented as one ex-
tra component per station. The task is now to syn-
thesize a controller for the machine that transports the
pieces from station to station right in time. As a criti-
cal safety property, it is required that a workpiece must
be processed by all stations within a given time bound.

The incremental refinement strategy used by our
prototype starts with a subnetwork that comprises only
the last station in the pipeline that can cause an im-
mediate violation of the critical timeout property. On
each refinement step, our heuristic selects the preceding
station to be added to the subnetwork. Each local syn-
thesis procedure yields an approximation of the global
attractor set that, in turn, is used in the subsequent
synthesis procedures.

Table 1 shows the results of our evaluation. The
first three columns describe the examined benchmark
instance: the number of stations, whether a controller

2The UPPAAL-Tiga model of the benchmark is available at
http://www.avacs.org/Benchmarks/Open/gps_controller.tgz

exists w.r.t. the timeout property (Sat), and whether
the precise model of the processing stations (including
their substations) is explicitly given as extra compo-
nents (Ext). This is followed by two columns contain-
ing the explored states and running time of UPPAAL-

Tiga. The last five columns summarize the results
from our prototype implementation. They comprise
the accumulated number of post and pre steps, i.e., the
sum of all forward and backward game solving steps of
all local synthesis procedures that were necessary to
obtain the final result, the sizes (in number of clock
zones) of the reachable state space and the attractor
set of the global system, and finally the total running
time of our tool.

The most significant observation is that in contrast
to nonincremental controller synthesis, our approach
only considers the relevant components. If the sub-
processing units are included in the system description,
they are ignored by the refinement algorithm. This is
documented in the table by the almost equal workload
of the nonextended and extended benchmark instances.

Interestingly, even though the refinement process
terminates with the global controller synthesis prob-
lem, the accumulated post and pre steps are an order of
magnitude smaller than those needed when synthesiz-
ing the global controller with nonincremental synthesis
in the first place. This documents the effectiveness of
our pruning rules based on the intermediate approxi-
mations of the global attractor set.

6 Conclusions and Outlook

We presented a novel abstraction refinement tech-
nique for timed controller synthesis that exploits the
compositional nature in the design of reactive sys-
tems. Therefore, we extended the classic computa-
tional model of timed game automata by a notion of
modality, which in turn, gives the possibility to obtain
under- and over-approximations of the attractor set.
We presented a refinement algorithm that computes a
chain of abstractions with increasing precision. In each
refinement cycle, a local synthesis problem on the cur-
rent abstraction is solved and an intermediate attractor
set approximation is computed that can be used for (1)
early termination and (2) simplification of the subse-
quent refinement cycles. We proved the soundness of
the abstractions and the termination of the refinement
algorithm. An empirical evaluation provides evidence
for the effectiveness of our approach in real-world ap-
plications.

In the abstraction refinement loop, the selection of
transitions on which to refine and components to in-
clude in the next subnetwork can potentially be made

UPPAAL-Tiga Component-based Abstraction Refinement
Benchmark Sat Ext States Time Post Pre Reach Attr Time

GPS 2 No No 67 0.01 8 11 5 5 0.00
GPS 3 No No 400 0.01 25 30 5 5 0.00
GPS 4 No No 2751 0.03 90 97 5 5 0.00
GPS 5 No No 14534 0.21 347 356 5 5 0.02
GPS 6 No No 62573 1.24 1372 1383 5 5 0.15
GPS 7 No No 205834 5.05 5469 5482 5 5 1.30

GPS 2 No Yes 12832 0.23 8 11 6 5 0.00
GPS 3 No Yes 1781742 362.65 25 30 6 5 0.00
GPS 4 No Yes MEMOUT 90 97 6 5 0.01
GPS 5 No Yes MEMOUT 347 356 6 5 0.03
GPS 6 No Yes MEMOUT 1372 1383 6 5 0.19
GPS 7 No Yes MEMOUT 5469 5482 6 5 1.73

GPS 2 Yes No 67 0.00 24 30 17 16 0.01
GPS 3 Yes No 416 0.00 93 113 65 60 0.00
GPS 4 Yes No 3042 0.04 366 445 257 236 0.02
GPS 5 Yes No 22891 0.34 1455 1811 1025 940 0.16
GPS 6 Yes No 184823 3.89 5808 7475 4097 3756 1.43
GPS 7 Yes No 1621644 47.11 23217 31004 16385 15020 37.71

GPS 2 Yes Yes 52852 1.14 22 28 17 16 0.00
GPS 3 Yes Yes 18767076 17457.02 87 107 65 60 0.01
GPS 4 Yes Yes MEMOUT 344 424 257 236 0.03
GPS 5 Yes Yes MEMOUT 1369 1734 1025 940 0.19
GPS 6 Yes Yes MEMOUT 5466 7185 4097 3756 1.74
GPS 7 Yes Yes MEMOUT 21851 29891 16385 15020 55.13

Table 1. Comparison of our approach with the timed game solver UPPAAL-Tiga using the Gear
Production Stack (GPS) benchmark. The columns (from left to right) describe the size of the instance

(number of stations), whether a controller exists (Sat), whether the stations are explicitly modeled as
extra components (Ext), the explored states and the (user) running time (in seconds) of UPPAAL-

Tiga, the accumulated post and pre steps of our prototype, the sizes (in terms of zones) of the
reachable state space and the attractor set of the global system, as well as the (user) running time

(in seconds) of our prototype. All benchmarks were measured on an AMD Opteron processor with
2.6 GHz and 4GB RAM.

in a more sophisticated way. In particular, we believe
that a high-level analysis of the communication struc-
ture of the component network, a low-level analysis of
the arising clock zones, or a thorough analysis of ab-
stract strategies found so far are good starting points
to develop effective refinement heuristics.

Another interesting direction for further investiga-
tion is a fully symbolic representation of both dis-
crete and continuous parts of the reachable state space
and the attractor set. Particularly our approach, in
which an under- and over-approximation of the attrac-
tor set in the refinement loop is maintained, would
greatly benefit from a fully symbolic state space treat-
ment. Promising starting points are symbolic tech-
niques from the real-time and hybrid model checking
domain [21, 24, 11].

Acknowledgment. This work was supported by
the German Research Foundation (DFG) as part of
the Transregional Collaborative Research Center “Au-
tomatic Verification and Analysis of Complex Systems”
(SFB/TR 14 AVACS).

The authors want to thank Bernd Finkbeiner for
useful comments and fruitful discussions.

References

[1] K. Altisen and S. Tripakis. Tools for controller synthe-
sis of timed systems. In 2nd Workshop on Real-Time
Tools (RT-TOOLS’02), 2002.

[2] R. Alur and D. L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[3] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Con-
troller synthesis for timed automata. In J.-F. Lafay,

editor, Proc. 5th IFAC Conference on System Struc-
ture and Control, pages 469–474. Elsevier, 1998.

[4] G. Behrmann, A. Cougnard, A. David, E. Fleury,
K. G. Larsen, and D. Lime. UPPAAL-Tiga: Time
for playing games! In W. Damm and H. Hermanns,
editors, Proc. 19th International Conference on Com-
puter Aided Verification (CAV’07), volume 4590 of
Lecture Notes in Computer Science, pages 121–125.
Springer, 2007.

[5] J. Bengtsson. Clocks, DBM, and States in Timed Sys-
tems. PhD thesis, Uppsala University, 2002.

[6] J. R. Büchi and L. H. Landweber. Solving sequen-
tial conditions by finite-state strategies. Trans. of the
American Mathematical Society, 138:295–311, 1969.

[7] F. Cassez, A. David, E. Fleury, K. G. Larsen, and
D. Lime. Efficient on-the-fly algorithms for the analy-
sis of timed games. In M. Abadi and L. de Alfaro, ed-
itors, Proc. 16th International Conference on Concur-
rency Theory (CONCUR’05), volume 3653 of Lecture
Notes in Computer Science, pages 66–80. Springer,
2005.

[8] F. Cassez, J. J. Jessen, K. G. Larsen, J.-F. Raskin, and
P.-A. Reynier. Automatic synthesis of robust and op-
timal controllers - an industrial case study. In R. Ma-
jumdar and P. Tabuada, editors, Proc. 12th Interna-
tional Conference on Hybrid Systems: Computation
and Control (HSCC’09), volume 5469 of Lecture Notes
in Computer Science, pages 90–104. Springer, 2009.

[9] A. Church. Logic, arithmetic and automata. In
V. Stenstrom, editor, Proc. International Congress of
Mathematicians 1962, pages 23–25, Uppsala, 1963.

[10] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and
H. Veith. Counterexample-guided abstraction refine-
ment. In E. A. Emerson and A. P. Sistla, edi-
tors, Proc. 12th International Conference on Com-
puter Aided Verification (CAV’00), volume 1855 of
Lecture Notes in Computer Science, pages 154–169.
Springer, 2000.

[11] W. Damm, S. Disch, H. Hungar, S. Jacobs, J. Pang,
F. Pigorsch, C. Scholl, U. Waldmann, and B. Wirtz.
Exact state set representations in the verification of
linear hybrid systems with large discrete state space.
In K. S. Namjoshi, T. Yoneda, T. Higashino, and
Y. Okamura, editors, Proc. 5th International Sympo-
sium on Automated Technology for Verification and
Analysis (ATVA’07), volume 4762 of Lecture Notes in
Computer Science, pages 425–440. Springer, 2007.

[12] L. de Alfaro, T. A. Henzinger, and R. Majumdar.
Symbolic algorithms for infinite-state games. In K. G.
Larsen and M. Nielsen, editors, Proc. 12th Inter-
national Conference on Concurrency Theory (CON-
CUR’01), volume 2154 of Lecture Notes in Computer
Science, pages 536–550. Springer, 2001.

[13] L. de Alfaro and P. Roy. Solving games via three-
valued abstraction refinement. In L. Caires and V. T.
Vasconcelos, editors, Proc. 18th International Confer-
ence on Concurrency Theory (CONCUR’07), volume
4703 of Lecture Notes in Computer Science, pages 74–
89. Springer, 2007.

[14] K. Dräger, B. Finkbeiner, and A. Podelski. Directed
model checking with distance-preserving abstractions.
STTT, 11(1):27–37, 2009.

[15] D. D’Souza and P. Madhusudan. Timed control syn-
thesis for external specifications. In H. Alt and A. Fer-
reira, editors, Proc. 19th Annual Symposium on Theo-
retical Aspects of Computer Science (STACS’02), vol-
ume 2285 of Lecture Notes in Computer Science, pages
571–582. Springer, 2002.

[16] S. Graf, B. Steffen, and G. Lüttgen. Composi-
tional minimisation of finite state systems using inter-
face specifications. Formal Aspects of Computation,
8(5):607–616, 1996.

[17] T. A. Henzinger, R. Jhala, and R. Majumdar.
Counterexample-guided control. In J. C. M. Baeten,
J. K. Lenstra, J. Parrow, and G. J. Woeginger, ed-
itors, Proc. 30th International Colloquium on Au-
tomata, Languages and Programming (ICALP’03),
volume 2719 of Lecture Notes in Computer Science,
pages 886–902. Springer, 2003.

[18] M. Huth, R. Jagadeesan, and D. Schmidt. Modal tran-
sition systems: A foundation for three-valued program
analysis. In D. Sands, editor, Proc. 10th European
Symposium on Programming Languages and Systems
(ESOP’01), volume 2028 of Lecture Notes in Com-
puter Science, pages 155–169. Springer, 2001.

[19] J. J. Jessen, J. I. Rasmussen, K. G. Larsen, and
A. David. Guided controller synthesis for climate con-
troller using Uppaal Tiga. In J.-F. Raskin and P. S.
Thiagarajan, editors, Proc. 5th International Confer-
ence on Formal Modeling and Analysis of Timed Sys-
tems (FORMATS’07), volume 4763 of Lecture Notes
in Computer Science, pages 227–240. Springer, 2007.

[20] K. G. Larsen. Modal specifications. In J. Sifakis, edi-
tor, Proc. International Workshop on Automatic Veri-
fication Methods for Finite State Systems, volume 407
of Lecture Notes in Computer Science, pages 232–246.
Springer-Verlag, 1990.

[21] K. G. Larsen, C. Weise, W. Yi, and J. Pearson. Clock
difference diagrams. Nordic Journal of Computing,
6(3):271–298, 1999.

[22] O. Maler, A. Pnueli, and J. Sifakis. On the synthe-
sis of discrete controllers for timed systems (an ex-
tended abstract). In E. W. Mayr and C. Puech, edi-
tors, Proc. 12th Annual Symposium on Theoretical As-
pects of Computer Science (STACS’95), volume 900
of Lecture Notes in Computer Science, pages 229–242.
Springer, 1995.

[23] S. Tripakis and K. Altisen. On-the-fly controller syn-
thesis for discrete and dense-time systems. In World
Congress on Formal Methods, volume 1708 of Lecture
Notes in Computer Science, pages 233–252. Springer,
1999.

[24] F. Wang. Region encoding diagram for fully symbolic
verification of real-time systems. In Proc. 24th In-
ternational Computer Software and Applications Con-
ference (COMPSAC’00), pages 509–515. IEEE Com-
puter Society, 2000.

