Necessary Observations in Nondeterministic
Planning

David Speck, Manuela Ortlieb, and Robert Mattmtiller

Research Group Foundations of AI, University of Freiburg, Germany
{speckd,ortlieb,mattmuel}@informatik.uni-freiburg.de

Abstract. An agent that interacts with a nondeterministic environ-
ment can often only partially observe the surroundings. This necessitates
observations via sensors rendering more information about the current
world state. Sensors can be expensive in many regards therefore it can be
essential to minimize the amount of sensors an agents requires to solve
given tasks. A limitation for sensor minimization is given by essential
sensors which are always required to solve particular problems. In this
paper we present an efficient algorithm which determines a set of neces-
sary observation variables. More specifically, we develop a bottom-up
algorithm which computes a set of variables which are always necessary
to observe, in order to always reach a goal state. Our experimental re-
sults show that the knowledge about necessary observation variables can
be used to minimize the number of sensors of an agent.

Keywords: Al planning, nondeterministic planning, partial observabil-
ity, observation actions

1 Introduction

An agent that interacts with a nondeterministic environment can often only par-
tially observe the surroundings. Acting in such an environment with uncertainty
necessitates observations of the current world state via sensors to obtain more
information for reaching a goal state. Such sensors can be expensive with regards
to battery, money, weight, maintenance, and time. Therefore it can be useful or
even essential to minimize the amount of sensors necessary to solve a particular
planning task. More precisely, we consider the sensors an agent needs to be fit-
ted with. In this paper, we discuss the problem of minimizing a set of necessary
sensors and not the problem of minimizing the amount of sensor observations.
For example, in a specific robotic application, an RGB-D camera can handle all
the observations a laser scanner would be used for, thus obviating the latter.
Regarding an extraterrestrial mission such a sensor reduction can be essential to
minimize the weight. We represent the uncertainty of a current world state as
a set of world states denoted as belief state. Applying and selecting actions and
observations via sensors for belief states (decision points) in such an environ-
ment is called offline partially observable nondeterministic planning. Similar to
Mattmiiller et al. [1] we reduce the problem of sensor minimization by assuming

that a sensor and its measured data are represented by a state variable which
can be observed. This simplification induces a search for a minimal set of vari-
ables O where only the variables contained in O can be observed and still every
planning task of the underlying planning domain is solvable. After the removal
of a variable o from the set of observable variables O we call o reduced. In addi-
tion, we reduce the problem of finding such a set of variables from the planning
domain level to the planning task level. As Mattmiiller et al. [1] mentioned, it
is possible to generalise the results if such a planning task is reasonably chosen
with regard to the underlying planning domain. Clearly, necessary observation
variables of a planning task IT can never be reduced without losing power with
regard to solving problems because if such a necessary observation variable is
not observable, at least planning task II is not solvable anymore. Furthermore,
a necessary observation variable o is an element of every minimal set of vari-
ables O which is still sufficient to solve every planning task of the underlying
planning domain if only the variables of O are observable. Considering the pre-
vious example, if an RGB-D camera is necessary to track the localization of a
robot, this camera can never be reduced particularly with regard to localization
problems. Such a knowledge about necessary sensors can improve the runtime of
a sensor reduction procedure depending on its construction. To our knowledge,
three recent studies on observation minimization have been published. Two of
them developed by Huang et al. [2,3] deal with observation minimization for a
fixed plan in different settings. Firstly, they presented an algorithm which cal-
culates an approximately minimal set of observations for a given set of variables
VY and a fixed strong plan 7 where all variables V are possibly observable. The
algorithm identifies all state pairs which need to be distinguished in plan 7 and
always chooses the observation variable which distinguishes the most remaining
not distinguished state pairs [2]. Secondly, Huang et al. [3] extended their re-
sults/algorithm and presented an attempt to solve the problem of observation
reduction for general plans with contexts. The work of Mattmiiller et al. [1]
is closely connected to this work in regard to the same problem setting. They
worked on a top-down approach which greedily removes observation variables
by the trial and error method still sufficient to solve a particular planning task.
This greedy top-down algorithm returns an inclusion minimal set of observa-
tion variables. While here, a bottom-up procedure is presented which collects
stepwise necessary observation variables, i.e. variables which always have to be
observed to solve a particular planning task.

2 Preliminaries

We formally define partially observable nondeterministic (POND) planning sim-
ilar to the definition of Mattmiiller et al. [1] using a finite-domain represen-
tation for the state variables. A POND planning task skeleton is a 5-tuple
II =(V, By, By, A, W), where V is a finite set of state variables, By is an initial
belief state, B, is a goal description, A is a finite set of nondeterministic ac-
tions, and YW C V is a set of possible observable variables. Every state variable

v in V has a finite domain D, and an extended domain D, , where L denotes
the undefined /don’t-care value. A function s, where s(v) € D for all v € V is
called a partial state. Partial state s is defined for a variable v if s(v) # L. The
scope of a partial state s is the set of all variables v which are defined in s, i.e.
scope(s) ={v €V | s(v) # L}. We call a partial state s a state if s is defined for
all variables of ¥V which means scope(s) = V. A variable-value pair is called a fact
and denoted by (v,d) or v = d, where v € V and d € D,.. The set S represents
all states over V and the set B represents all belief states over V, where B = 25.
We call a belief state B a goal belief state iff B C B,. A partial state s, can
be used as a condition or as an update on a state s. We say a condition s, is
satisfied in a state s iff s agrees with all defined variables of s,. An update s,
on a state s leads to a new state s’ that agrees with s, on all defined variables
and with s on all other variables. An action a € A is of the form a = (Pre, Eff)
where the two components are a partial state Pre called precondition and a fi-
nite set Eff of partial states eff called effect. We call the partial states eff € Eff
of an action a the nondeterministic outcomes of a. We denote the set of all
facts as precondition Pre or effect Eff of an action a = (Pre, Eff) by pre(a) and
eff (a), where eff (a) is the union over all facts of every nondeterministic outcome
eff € Eff. The union over a set of actions A is analogously defined as pre(A)
and eff (A), i.e. pre(A) = Jyeca pre(a) and eff (A) = U,c 4 eff (a). Applications
in POND planning are defined as follows: The application of a nondeterministic
outcome eff to a state s is a state app(eff,s) resulting from an update of s
with eff. The application of an effect Eff to a state s results in a set of states
app(Eff,s) = {app(eff,s) | eff € Eff}. An action a = (Pre, Eff) is applicable
in a state s if its precondition Pre is satisfied in s. An action a = (Pre, Eff) is
applicable in a belief state B if its precondition Pre is satisfied in all states s,
where s € B. The application of an action a = (Pre, Eff) in a belief state B is
a belief state app(a, B) = {app(eff,s) | eff € Eff,s € B} if a is applicable in B
and undefined otherwise. To complete the definition of partially observable non-
deterministic planning we define an observation variable or in short observation
as a variable o € W. The result of an observation application to a belief state B
is a belief state app(o, B) = {{s € B | s(0) =d} | d € D,}\{0} where app(o, B)
is a non-empty subset of B and contains only states according to the possible
values of o.

A POND planning task II|O] = (II,0) is a tuple, where IT is a POND
planning task skeleton, and O € W is a finite set of observations. Actions and
observations have positive unit costs for applications. In the following section
we will denote a planning task IT[0] = (II,O) also as IT if it is clearly under-
standable from the context. We call a partial mapping 7 from belief states to
applicable actions or observations a plan for a given POND planning task. A
plan 7 is closed if every belief state B reachable from the initial belief state By
following m is a goal belief state or plan 7 is defined for B. If from every belief
state B reachable from initial belief state By following 7 at least one goal state
B’ C B, is reachable following 7, we call m proper. A plan 7 is a strong cyclic
plan for a POND planning task if 7 is closed and proper. We denote by B, the set

of all belief states which are non-goal states and reachable from the initial belief
state By following 7, including By. An action or observation occurs in a plan
7 if there exists a belief state B € By, where m(B) = a or n(B) = o [1,4]. Let
a = (Pre, Eff), with Eff = {eff1,...,effn} be an action. The strong outcome

effi(v) if v € scope(eff;)
Pre(v) otherwise

100 {

contains all facts which are always true after applying action a with a resulting
outcome of eff;. The strong effect Eff* = {eff;,...,eff5} contains all corre-
sponding strong outcomes of Eff.

Applying and selecting actions in deterministic environments where an initial
world state is fully known is called classical planning. We define classical planning
as a special case of POND planning. A classical planning task using finite-domain
representation for the state variables is a 4-tuple ITyer = (V, Aget, So, B«), where
V is a finite set of state variables, s, is an initial world state over V, Age; is
a finite set of deterministic actions over V, and B, is a goal description. An
action a € Ages in classical planning is a nondeterministic action a with the
restriction that effect Eff contains only one nondeterministic outcome eff, i.e
|Eff| = 1. We call such an action a a deterministic action. In classical planning
actions are applied in world states and result in world states. A deterministic
action a = (Pre, Eff) is applicable in a world state s if its precondition Pre is
satisfied in s. The application of an action a = (Pre, Eff) to a world state s is
the world state app(a,s) = app(eff,s), where {eff } = Eff if a is applicable in
s and undefined otherwise. Hereafter, if we talk about preconditions and effects
in classical planning we only mention facts, i.e. we ignore undefined variables.
A (classical) plan 7m4e; for a planning task ITje; = (V, Adet, So, Bs«) is a sequence
of applicable actions ay, ..., a, with a world state sequence sq, ..., s,+1 where
app(ai, ;) = s;y1 and s,41 € By is a goal world state. An action a € Aget
occurs in a plan mge if it is contained in the application sequence of mge;. The
determinization of a nondeterministic action a = (Pre, Eff), with Eff = {eff1,
..., effn}, is a set of n actions a* = (Pre,{eff;}) generated by the function
Aget(a).! Such an action a® = (Pre,{eff;}) is a deterministic action. Every
POND planning task IT = (V, By, B., A, W) has |By| unique classical (determin-
istic) planning tasks ITger = (V, Adet, S0, B«) where Ager = (Jyec 4 Adet(a) and
sg € Bo. The function n(a®) : Ager — A maps a determinized action a® € Agey
back to its original nondeterministic action a € A. A disjunctive action land-
mark or in short landmark of a classical planning task IT4.; is a set of actions
L such that at least one action of L occurs in every plan for IT;.;. Originally
the landmark cut procedure by Helmert and Domshlak [5] is used as a heuris-
tic function by calculating disjunctive landmarks of a classical planning task.
We will slightly modify the procedure by returning the disjunctive landmarks
of a classical planning task I14.; instead of the heuristic value and denote the
resulting landmarks by LM-cut(I14e).

! For simplification we assume that every determinized action has a particular unique
ID which may lead to duplications of actions.

3 Necessary Observations

Targeting observation reduction regarding a POND planning task we can search
for observations that can never be reduced, i.e. observations that are always
necessary for every strong cyclic plan. We call such an observation a necessary
observation and define it as follows.

Definition 1 (Necessary Observation). A necessary observation of a POND
planning task II is an observation o such that it occurs at least once in every
strong cyclic plan for II. We call a set of necessary observations o a mecessary
observation set N.

For example, we assume a nondeterministic BLOCKSWORLD with two blocks
A and B. Initially, block A is located on block B. The goal is variable B-clear
which means that no block is on B. There exists only one action pick-up-A-B
with two outcomes: either block A is picked up or nothing happens and block A
remains on block B. Furthermore, we assume that it is only possible to observe
if any block is located on block X by observation X-clear. Obviously, action
pick-up-A-B has to be applied until block A is picked up for reaching the goal
state. The only possibility for verifying that block A is picked up is to observe
B-clear which is why observation B-clear occurs in every strong cyclic plan for
the problem. Thus in this setting B-clear is a necessary observation and ad-
ditionally the only one. However, not always necessary observations exist. We
assume that the previous example contains also an observation X -picked which
encodes if block X is picked up. Now we can construct two different strong
cyclic plans — one with observation B-clear and one with A-picked because ob-
servations B-clear and A-picked verify whether B-clear is satisfied after applying
action pick-up-A-B. Therefore none of these observations occurs in every strong
cyclic plan and consequently no necessary observation exists. Interestingly, the
reduction of an unnecessary observation can lead to additional necessary ob-
servations. Regarding the previous example, by reducing observation B-clear
observation A-picked becomes necessary and vice versa. This property will be
topic of upcoming research.

Necessary observation sets and cardinality or inclusion minimal observation
sets sufficient to solve a POND planning task are closely connected. To formalize
this connection, we need a theorem formulated by Mattmdiller et al. [1].

Theorem 1 (Mattmiiller et al., 2014 [1]). Given a POND planning task
skeleton II the problem of finding a cardinality (OBSERVECARDMIN) or an in-
clusion minimal set of observations (OBSERVEINCLMIN) O C W for II such
that there exists a strong cyclic plan for IT[O), or returning NONE if no such set
O exists, is 2-EXPTIME-complete. O

Clearly, every cardinality minimal solution is also inclusion minimal, but not
vice versa. Therefore, the following results regarding the OBSERVECARDMIN
problem hold also for the OBSERVEINCLMIN problem.

Theorem 2. A necessary observation set is a subset of all solutions for the
OBSERVECARDMIN problem.

Proof. A solution O for the OBSERVECARDMIN problem is a cardinality minimal
set such that there exists a strong cyclic plan 7. By Definition 1 a necessary
observation set A/ contains only necessary observation o such that o occurs in
every strong cyclic plan 7 for II. Therefore, a strong cyclic plan 7 for II can
only exist if all elements of a necessary observation set N are contained in O,
ie. N CO. O

Next we proof that every planning task has a unique and well-defined maxi-
mal necessary observation set N*. The latter property is the main idea of the
following bottom-up procedure which computes iteratively necessary observa-
tion sets and combines all corresponding necessary observations to one resulting
necessary observation set.

Theorem 3. The mazimal necessary observation set N* of a planning task IT
is unique and well-defined.

Proof. Every planning task IT has at least one maximal necessary observation
set N* (Definition 1). We assume that A'f and AN are two maximal necessary
observation sets of a planning task [T with N5 # N. Thus, there exists at least
one necessary observation o which is an element of the symmetric difference
NIANG, ie. 0o € NTANG. By definition, a maximal necessary observation set
N* contains all necessary observations which leads to a contradiction. Therefore
exactly one necessary observation set AN™* exists for a planning task IT (unique-
ness). From the uniqueness of N* follows that N* is well-defined. O

3.1 Bottom-Up Search

We present an algorithm called NOs which computes a necessary observation set
for a given POND planning task II. The NoOS algorithm is divided in two parts.
First, we present a calculation of necessarily needed nondeterministic actions
using determinized planning tasks Ilz.; and landmarks computed by the land-
mark cut procedure LM-cut(I14.:). The second part is about getting a necessary
observation set from a set of landmarks £. In this part we search for differences
between desired outcomes contained in the landmarks, i.e. outcomes which lead
further to a goal state, and outcomes which are undesired as they belong to
the same original nondeterministic action. Figure 1 provides an overview of the
different steps of the NoSs algorithm.

Part 1: Given a POND planning task IT we use the landmark cut procedure to
generate landmarks for a corresponding determinized (classical) planning task
I 4e¢. The application of a deterministic action, i.e. an action with only one
outcome, of a POND planning task can never be a reason for an observation.
The uncertainty of a world state presented in a belief state is evoked by an earlier

POND Det. Task Action é“:cessa_ry
Task S; € By Landmarks SeSr;/tatlon

Det. Task C
S € By 0 \

Det. Task
B Ln
Part 1: Sn € Bo \) Part2:

! All-Outcomes ! \
v__ Determinization _ ____ _"_______ L s

Fig. 1. Overview of the different steps of the Nos algorithm.

nondeterministic action or the uncertainty of the initial state. Therefore, we are
only interested in nondeterministic actions with more than one outcome. Thus
we modify a determinized (classical) planning task IT4.; by the cost function

(1)

Caer(a) =
aet() 0 otherwise

{1 if |Eff| > 1 where n(a) = (Pre, Eff)
which maps all actions a € Age; with more than one outcome (nondeterministic)
in IT to cost 1 and all other actions a’ € Ag.; with only one outcome in IT to
cost 0 (deterministic). A planning task ITz.; with cost function cge is denoted
as IT5,,. We compute a set of landmarks for a determinized (classical) planning
task Il4.; as

L = LM-cut(II§,,) . (2)

Every landmark of IIj,, contains only outcomes of nondeterministic actions.
Finally, given a POND planning task IT we compute families of landmarks for
a sampled number of determinized planning task I14.; and collect all landmarks
LM-cut(II§,,) as one final set of landmarks L.

Part 2: Computing a necessary observation set out of a computed set of land-
marks £ is the second step of the NOS algorithm. As mentioned before we search
for differences between desired outcomes and undesired outcomes of a nondeter-
ministic action. For that reason we group outcomes of the same original action
contained in a landmark. Such a group of outcomes is called a parallel outcome
P C Aget, where each action a € P has the same original action in the corre-
sponding POND planning task II, i.e. Va,a’ € P : n(a) = n(a’). Using parallel
outcomes we can define grouped landmarks as follows.

Definition 2 (Grouped Landmarks). We call LY = {P¢ | a € L} a grouped

landmark where P§ = {a’ € L | n(a) = n(a’)} forms disjoint equivalence classes
with nondeterministic actions of the same original actions as representatives.

Concluding, we define undesired outcomes of a parallel outcome as P and call it
complement of a parallel outcome set P which contains all actions a ¢ P, where

n(a) = n(P). Attached with the latter concept it becomes possible to compute
necessary observations given a set of landmarks £ (Part 1) using functions (1)
and (2) and the following six functions.?

Function symDiffs(P) collects all sets of facts (symmetric differences) which
can be chosen to distinguish the outcomes of a parallel outcome P (desired) from
an outcome of its complement P (undesired).

symDiffs(P) = {eff*(P) A eff *({a}) | a € P} (3)
Transform all facts to observation variables.

obsVars(P) = U {{vew|3d+#L:(v,d) e D}} (4)
DesymDiffs(P)

Collect all variables which are necessary to distinguish the outcomes of parallel
outcome P from the outcomes of its complement P.

singleVars(P) ={v € D | D € obsVar(P) A|D| =1} (5)

Compute a necessary observation set for a given landmark. Remove parallel
outcomes which have an empty observation choice and therefore cannot be com-
pletely distinguished.

nos(L) = ﬂ single Vars(P) (6)
PeLC : OgobsVars(P)

Remove all landmarks from a set of landmark which contain a parallel outcome
P with an empty complement P and therefore never lead to an uncertainty by
applying the original action.

prunel(L) ={L € L | VP € LY : P # 0} (7)

Collect all necessary observation sets computed for every landmark individually.

nos(L) = U nos(L) (8)

LepruneL(L)

As in previous examples we assume a nondeterministic BLOCKSWORLD but
with three blocks A, B, and C instead of only two blocks. There exist exactly
two actions put-on-block-B-C' and put-tower-on-block-A-B-C which are visual-
ized in Figure 2. Action put-on-block-B-C has an effect where either block B
drops down to the table (0) or block B is stacked on block C' (1), and action
put-tower-on-block-A-B-C has an effect where either tower A-B drops down to
the table (0) or tower A-B is stacked on block C' (1). Furthermore, it is only
possible to observe if any block is located on block X by observation X -clear.
We assume L = {put-on-block-B-C*, put-tower-on-block-A-B-C'} to be a land-

2 Notice that at least one outcome of every landmark occurs in every plan for It
and that a strong cyclic plan for the corresponding POND planning task II always
contains all outcomes of I14.; which additionally need to be verified by observations.

a <r}‘€l <
] ﬂl ﬂl

Fig. 2. Actions put-on-block-B-C' (left) and put-tower-on-block-A-B-C' (right) with
there corresponding possible outcomes.

mark. Thus the goal is to apply an action such that any block is located on
block C afterwards, i.e. C-clear. The corresponding grouped landmark of L
is L¢ = {{put-on-block-B-C'}, {put-tower-on-block-A-B-C'}}. The symmet-
ric differences of observable facts which distinguishes the desired outcomes (1)
of both actions contained in LE from their corresponding undesired outcome (0)
is C-clear (Figure 2). Therefore to ensure that at least one outcome of L occurs
observation C'-clear has to be applied and the resulting necessary observation

set is N' = {C-clear}.

NOS Algorithm: Using Part 1 and Part 2 it becomes possible to calculate a
necessary observation set for a given POND planing task II and a number of
considered initial states k. Algorithm Nos (Algorithm 1) a computes a necessary
observation set N which is a subset of a maximal necessary observation set N'*.
Every variable o € N is observed at least once in any strong cyclic plan 7 for
I1. Algorithm 1 iterates over a number k of determinized planning tasks with
different initial states and first collects the corresponding landmarks and then
computes necessary observations using the landmarks.

Algorithm 1 Nos(I7, k)
Require: IT = (V, By, B, A, W),k € N
N =0; £ =0
for {so,...,sx} C By do
Haer =V, Adet, Si, Bx)
L=LULM-cut(II§.)
N =nos(L)

return N

In the following we show the runtime of Algorithm 1 and proof its correctness.

Theorem 4. The runtime complezity of Algorithm 1 is bounded by O(||IT||* * k)
where II = (V, By, B, A, W) is an input POND planning task, and k is the
number of considered initial states.

Proof. The landmark cut procedure is bounded in runtime by O(|| I 4e¢||*) [6] and
Algorithm 1 contains k of such procedures, which leads to a runtime bounded
by O(||[Iget||* * k). The size of a set of landmarks £ computed by the landmark
cut procedure for one determinzed planning task 14, is bounded by O(|| I get|])-
Overall we have k landmark cut procedures wherefore the amount of landmarks
is bounded by O(||II4et|| * k). Function nos(L) (6) is bounded in runtime by
O(||H get||)- Thus, function nos(L) (8) is bounded by O(||I4et | * k). The deter-
minization of a planning task ITg; can be bounded by O(||II]|*) resulting in an
upper bound complexity of O(||I||* % k).

Theorem 5. Algorithm NoS (Algorithm 1) returns a necessary observation set
for a given POND planning task II, i.e. Algorithm 1 is correct.

Proof. Reducing the cost of an action has no side effects for other actions which
is why a landmark for 11§ , is also a landmark for I7;4.:. A strong cyclic plan 7 for
11 is a composition of plans mge; for I14.;. At least one action of every landmark
computed by LM-cut(II§,,) occurs in every plan mge. To verify that one of the
outcomes contained in a landmark happened, an observation is necessary. Such
an observation is always contained in the symmetric difference of the strong effect
of an outcome contained in a landmark and an outcome which is not contained in
the landmark belonging to the same original nondeterministic action. Therefore
collecting observations which are always required to distinguish all outcomes of
a landmark from outcomes not contained in the landmark of the same original
action results in a necessary observation set.

3.2 Observation Minimization

A necessary observation set can be used to improve the runtime of the GRr-
EEDY algorithm by Mattmdiller et al. [1]. The GREEDY algorithm is a top-down
approach which greedily removes observation variables by the trial-and-error
method until a solution O for the OBSERVEINCLMIN problem remains. The au-
thors mentioned that a useful extension for the GREEDY algorithm is a heuristic
which orders the candidate variables of removal. A precomputed necessary ob-
servation set does not order but rather eliminate such candidates. For every
candidate variable of removal which is part of a necessary observation set, one
removal iteration of the GREEDY algorithm is eliminated. Therefore, we get the
following Algorithm 2 in pseudo code. Clearly, if no necessary observation is
found or if the input size of the planning task is small, there is no runtime im-
provement. Nevertheless, for every reduced candidate variable of removal one
planning procedure is eliminated. Such a planning procedure is (even with plan
reuse) 2-EXPTIME-complete [7]. Our results show that Algorithm 2 outperforms
the original GREEDY algorithm.

Algorithm 2 PRUNEDGREEDY(IT, k)
Require: 1T = (V, By, Bs,, A W),k € N
1: N =Nos(I1,k)

2: set candidates of removal O to O \ N
3: O = GREEDY(!])

4: return O

4 Experiments

We implemented Algorithm 1 and the GREEDY algorithm returning a solution
for the OBSERVEINCLMIN problem using the MYND planner [1]. The overall 172
analysed POND planning tasks belong to the BLOCKSWORLDSENSE (only block
clear observations), TIDYUP or FIRSTRESPONDERS domain. Every planning task
belonging to the BLOCKSWORLDSENSE domain and FIRSTRESPONDERS domain
has only one initial state (|Bg| = 1) and therefore only one determinized plan-
ning task. Whereas the planning tasks of the TIDYUP domain have an initial
belief state containing up to 10° initial states. We used a memory limit of 4
GB. Table 1 summarizes our experimental results analysing Algorithm 1. The
runtime of Algorithm 1 considering one and ten initial states was around 1 sec-
ond whereas the runtime considering all initial states so € By was up to one
hour. Interestingly, for almost every task of the TIDYUP domain, there is no
difference between the necessary observation set A'By calculated by considering
all initial states By and the necessary observation set A'S; considering only 1
initial state. Therefore, we can argue that at least for planning tasks belonging
to the TIDYUP domain, sampling over a number of initial states (e.g. 1) still
leads to good results in practice. This is due to the fact that deterministic plans
for different initial states of a planning task usually have similar subgoals and
therefore similar landmarks.

Table 1. Cardinality of observation sets (variables). Legend: By = initial belief state,
W = possible observations, N' = necessary observation set computed by the Nos
algorithm (B = considering all initial states, Sx = considering k sampled initial states).

Domain (#Tasks) @|Bo| 9|\W| G|N Bo| @IN S1| D|N S|

BWSENSE(30) 1.00 10.00 6.53 - -
FRPONDERS(75) 1.00 10.36 2.61 - -
TIDYUP(67) ~2x10% 2330 561 561 5.61
AlI(172) ~8%10° 1534 446 446 5.61

Concluding Figure 3 visualizes our experimental results analysing the runtime
improvement of Algorithm 2 with respect to the original GREEDY algorithm [1].
We consider only instances which are solved by both algorithms and aborted
the calculation after one hour using a memory limit of 4 GB. Furthermore, we
display planning tasks where at least one of the two algorithms was able to solve

that task in time. Overall, Algorithm 2 solves eight more planning tasks within
one hour computation time. A few instances have a shorter runtime using the
original GREEDY algorithm. This can be either traced back to a small state space
(ID: 7), where the additional computation of a necessary observation set takes
more time then it saves; or it can be due to nondeterministic decisions of the
MYND planner (ID: 39). The latter also causes that one planning task (ID: 43)
was only solved by the original GREEDY algorithm and was not solved in time
by the extended version. Finally, considering the runtime of unsolved instances
as (at least) 60 minutes, Algorithm 2 (PRUNEDGREEDY) was on average 526
seconds (over 8.5 minutes) faster then the original GREEDY Algorithm [1].

F—I T T T T T T T T ™3
L |—m— Greedy i
10° £ | —&— PrunedGreedy E
2 g]

n |
5 10°% E
E ol f
= 10' £ -
=i F E
& i |
10 E
107 ' I I I I I I I I [

0 5 10 15 20 25 30 35 40 45

Task ID

Fig. 3. Overall runtime of the GREEDY Algorithm [1] and Algorithm 2 (PRUNED-
GREEDY). Legend: 1-5 = BLOCKSWORLDSENSE, 6-25 = FIRSTRESPONDERS, 26-44 =
Ty UP.

5 Conclusion and Future Work

We introduced the concept of necessary observations and discussed its connection
to the recent results of observation minimization. Additionally, we presented an
efficient bottom-up algorithm (Nos) for finding a set of necessary observations
of a given POND planning task with polynomial runtime in size of the input size
of the planning task and considered initial states. Furthermore, we extended the
top-down GREEDY algorithm of Mattmiiller et al. [1] with the Nos Algorithm
which leads to a smaller set of candidates for removal by precomputing a neces-
sary observation set. Our experiments show that the NoOS algorithm is a useful
extension for the GREEDY algorithm and is superior in terms of runtime.

For future work we plan to compute necessary observation sets in every ite-
ration step of the GREEDY algorithm. In addition, we want to use necessary
observations computed by the presented algorithm as a heuristic value for plan-
ning which possibly leads to plans with less observations.

References

1. Mattmiiller, R., Ortlieb, M., Wacker, E.: Minimizing necessary observations for non-
deterministic planning. In: Proceedings of the 37th German Conference on Artificial
Intelligence (KI 2014). pp. 309-320 (2014)

2. Huang, W., Wen, Z., Jiang, Y., Wu, L.: Observation reduction for strong plans. In:
Proc. 20th International Joint Conference on Artificial Intelligence (IJCAI 2007).
pp. 1930-1935 (2007)

3. Huang, W., Wen, Z., Jiang, Y., Peng., H.: Structured plans and observation re-
duction for plans with contexts. In: Proc. 21st International Joint Conference on
Artificial Intelligence (IJCATI 2009). pp. 1721-1727 (2009)

4. Cimatti, A., Pistore, M., Roveri, M., Traverso, P.:. Weak, strong, and strong cyclic
planning via symbolic model checking. Artificial Intelligence 147(1-2), 35-84 (2003)

5. Helmert, M., Domshlak, C.: LM-cut: Optimal planning with the landmark-cut
heuristic. In: Seventh International Planning Competition (IPC 2011). pp. 103-105
(2011)

6. Helmert, M., Domshlak, C.: Landmarks, critical paths and abstraction: What’s the
difference anyway?. In: Proc. 21st International Joint Conference on Artificial In-
telligence (IJCAIT 2009). pp. 162-169 (2009)

7. Rintanen, J.: Complexity of planning with partial observability. In: Proc. 14th In-
ternational Conference on Automated Planning and Scheduling (ICAPS 2004). pp.
345-354 (2004)

