
Planning with State-Dependent Action Costs
ICAPS 2016 Tutorial

Robert Mattmüller Florian Geißer
June 13, 2016



Background

Compilation

Relaxations

Abstractions

SummaryPart I

Theory

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 2 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

Section

Background

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 3 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

What are State-Dependent Action Costs?

London@(0,0)

Freiburg

Madrid

Paris

Istanbul

14
5 10 32

Action costs: unit constant state-dependent

cost(flyTo(London)) = |xLondon− xcurrent|+ |yLondon− ycurrent|
= |xcurrent|+ |ycurrent|.

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 4 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

What are State-Dependent Action Costs?

London@(0,0)

Freiburg

Madrid

Paris

Istanbul

14
5 10 32

Action costs: unit constant state-dependent

cost(fly(Madrid,London)) = 1, cost(fly(Paris,London)) = 1,

cost(fly(Freiburg,London)) = 1, cost(fly(Istanbul,London)) = 1.

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 4 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

What are State-Dependent Action Costs?

London@(0,0)

Freiburg

Madrid

Paris

Istanbul

14
5 10 32

Action costs: unit constant state-dependent

cost(fly(Madrid,London)) = 14, cost(fly(Paris,London)) = 5,

cost(fly(Freiburg,London)) = 10, cost(fly(Istanbul,London)) = 32.

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 4 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

What are State-Dependent Action Costs?

London@(0,0)

Freiburg

Madrid

Paris

Istanbul

14
5 10 32

Action costs: unit constant state-dependent

cost(flyTo(London)) = |xLondon− xcurrent|+ |yLondon− ycurrent|
= |xcurrent|+ |ycurrent|.

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 4 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

Why Study State-Dependent Action Costs?

Human perspective:
“natural” and “elegant”
modeler-friendly less error-prone?

Machine perspective:
more structured exploit in algorithms?
fewer redundancies, exponentially more compact

Language support:
numeric PDDL, PDDL 3
RDDL, MDPs (state-dependent rewards!)

Applications:
modeling preferences and soft goals
PSR domain

(Abbreviation: SDAC = state-dependent action costs)
June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 5 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

Handling State-Dependent Action Costs

Good news:
Computing g values in forward search still easy.

Challenge:
But what about SDAC-aware h values?
Or can we simply compile SDAC away?

This tutorial:
Proposed answers to these challenges.

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 6 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

Handling State-Dependent Action Costs

Roadmap:
1 Look at compilations.
2 This leads to edge-valued multi-valued decision diagrams

(EVMDDs) as data structure to represent cost functions.
3 Based on EVMDDs, formalize and discuss:

compilations
relaxation heuristics
abstraction heuristics

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 7 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

State-Dependent Action Costs
Running Example

Example (Household domain)
Actions:

vacuumFloor = 〈>, floorClean〉
washDishes = 〈>, dishesClean〉

doHousework = 〈>, floorClean∧dishesClean〉

Cost functions:

costvacuumFloor = [¬floorClean] ·2
costwashDishes = [¬dishesClean] · (1+2 · [¬haveDishwasher])

costdoHousework = costvacuumFloor + costwashDishes

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 8 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

State-Dependent Action Costs
Compilations

Different ways of compiling SDAC away:
Compilation I: “Parallel Action Decomposition”
Compilation II: “Purely Sequential Action Decomposition”
Compilation III: “EVMDD-Based Action Decomposition”

(combination of Compilations I and II)

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 9 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

State-Dependent Action Costs
Compilation I: “Parallel Action Decomposition”

Example
dishesClean, haveDishwasher: 0

dishesClean, ¬haveDishwasher: 0

¬dishesClean, haveDishwasher: 1

¬dishesClean, ¬haveDishwasher: 3

washDishes( dC, hD) = 〈 dC∧ hD, dC〉, cost= 0

washDishes( dC,¬hD) = 〈 dC∧¬hD, dC〉, cost= 0

washDishes(¬dC, hD) = 〈¬dC∧ hD, dC〉, cost= 1

washDishes(¬dC,¬hD) = 〈¬dC∧¬hD, dC〉, cost= 3

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 10 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

State-Dependent Action Costs
Compilation I: “Parallel Action Decomposition”

Compilation I
Transform each action into multiple actions:

one for each partial state relevant to cost function
add partial state to precondition
use cost for partial state as constant cost

Properties:
" always possible
% exponential blow-up

Question: Exponential blow-up avoidable? Compilation II

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 11 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

State-Dependent Action Costs
Compilation II: “Purely Sequential Action Decomposition”

Example
Assume we own a dishwasher:

costdoHousework = 2 · [¬floorClean]+ [¬dishesClean]

floorClean: 0

¬floorClean: 2

dishesClean: 0

¬dishesClean: 1

doHousework1( fC) = 〈 fC, fC〉, cost= 0

doHousework1(¬fC) = 〈¬fC, fC〉, cost= 2

doHousework2( dC) = 〈 dC, dC〉, cost= 0

doHousework2(¬dC) = 〈¬dC, dC〉, cost= 1

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 12 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

State-Dependent Action Costs
Compilation II: “Purely Sequential Action Decomposition”

Compilation II
If costs additively decomposable:

high-level actions ≈ macro actions
decompose into sequential micro actions

Properties:
" linear blow-up
% not always possible
a plan lengths not preserved, costs preserved
a blow-up in search space action ordering!
a attention: all partial effects at end!

Question: Can this always work (kind of)? Compilation III
June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 13 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

State-Dependent Action Costs
Compilation III: “EVMDD-Based Action Decomposition”

Example
costdoHousework = [¬floorClean] ·2+

[¬dishesClean] · (1+2 · [¬haveDishwasher])

floorClean: 0

¬floorClean: 2

dishesClean, haveDishwasher: 0

dishesClean, ¬haveDishwasher: 0

¬dishesClean, haveDishwasher: 1

¬dishesClean, ¬haveDishwasher: 3

Simplify right-hand part of diagram:
Branch over single variable at a time.
Exploit: haveDishwasher irrelevant if dishesClean is true.

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 14 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

State-Dependent Action Costs
Compilation III: “EVMDD-Based Action Decomposition”

Example (ctd.)

floorClean: 0

¬floorClean: 2

dishesClean: 0

¬dishesClean: 1

haveDishwasher: 0

¬haveDishwasher: 2

Later:
Compiled actions
Auxiliary variables to enforce action ordering

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 15 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

State-Dependent Action Costs
Compilation III: “EVMDD-Based Action Decomposition”

Compilation III
exploit as much additive decomposability as possible
multiply out variable domains where inevitable
Technicalities:

fix variable ordering
perform Shannon and isomorphism reduction

Properties:
" always possible
a worst-case exponential blow-up, but as good as it gets
a plan lengths not preserved, costs preserved
a as before: action ordering, all partial effects at end!

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 16 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

State-Dependent Action Costs
Compilation III: “EVMDD-Based Action Decomposition”

Compilation III provides optimal combination of sequential and
parallel action decomposition, given fixed variable ordering.

Question: How to find such decompositions automatically?

Answer: Figure for Compilation III basically a reduced ordered
edge-valued multi-valued decision diagram (EVMDD)!

[Lai et al., 1996; Ciardo and Siminiceanu, 2002]

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 17 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

EVMDDs
Edge-Valued Multi-Valued Decision Diagrams

EVMDDs:
Decision diagrams for arithmetic functions
Decision nodes with associated decision variables
Edge weights: partial costs contributed by facts
Size of EVMDD compact in many “typical” cases

Properties:
" satisfy all requirements for Compilation III,

even (almost) uniquely determined by them
" already have well-established theory and tool support
" detect and exhibit additive structure in arithmetic functions

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 18 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

EVMDDs
Edge-Valued Multi-Valued Decision Diagrams

Consequence:
represent cost functions as EVMDDs
exploit additive structure exhibited by them
draw on theory and tool support for EVMDDs

Two perspectives on EVMDDs:
graphs specifying how to decompose action costs
data structures encoding action costs

(used independently from compilations)

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 19 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

EVMDDs
Edge-Valued Multi-Valued Decision Diagrams

Example (EVMDD Evaluation)
costa = xy2 + z+2 Dx =Dz = {0,1}, Dy = {0,1,2}

x

y

z

0

2

0

0
0

1

4

2

1
1

0

0

1

1

0

0

Directed acyclic graph
Dangling incoming edge
Single terminal node 0
Decision nodes with:

decision variables
edge label
edge weights

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 20 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

EVMDDs
Edge-Valued Multi-Valued Decision Diagrams

Example (EVMDD Evaluation)
costa = xy2 + z+2 Dx =Dz = {0,1}, Dy = {0,1,2}

x

y

z

0

2

0

0
0

1

4

2

1
1

0

0

1

1

0

0

s = {x 7→ 1, y 7→ 2, z 7→ 0}
costa(s) =

2+0+4+0 = 6

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 20 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

EVMDDs
Edge-Valued Multi-Valued Decision Diagrams

Example (EVMDD Evaluation)
costa = xy2 + z+2 Dx =Dz = {0,1}, Dy = {0,1,2}

x

y

z

0

2

0

0
0

1

4

2

1
1

0

0

1

1

0

0

s = {x 7→ 1, y 7→ 2, z 7→ 0}
costa(s) = 2+

0+4+0 = 6

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 20 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

EVMDDs
Edge-Valued Multi-Valued Decision Diagrams

Example (EVMDD Evaluation)
costa = xy2 + z+2 Dx =Dz = {0,1}, Dy = {0,1,2}

x

y

z

0

2

0

0
0

1

4

2

1
1

0

0

1

1

0

0

s = {x 7→ 1, y 7→ 2, z 7→ 0}
costa(s) = 2+0+

4+0 = 6

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 20 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

EVMDDs
Edge-Valued Multi-Valued Decision Diagrams

Example (EVMDD Evaluation)
costa = xy2 + z+2 Dx =Dz = {0,1}, Dy = {0,1,2}

x

y

z

0

2

0

0
0

1

4

2

1
1

0

0

1

1

0

0

s = {x 7→ 1, y 7→ 2, z 7→ 0}
costa(s) = 2+0+4+

0 = 6

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 20 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

EVMDDs
Edge-Valued Multi-Valued Decision Diagrams

Example (EVMDD Evaluation)
costa = xy2 + z+2 Dx =Dz = {0,1}, Dy = {0,1,2}

x

y

z

0

2

0

0
0

1

4

2

1
1

0

0

1

1

0

0

s = {x 7→ 1, y 7→ 2, z 7→ 0}
costa(s) = 2+0+4+0 = 6

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 20 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

EVMDDs
Edge-Valued Multi-Valued Decision Diagrams

Properties of EVMDDs:

" Existence for finitely many finite-domain variables
" Uniqueness/canonicity if reduced and ordered
" Basic arithmetic operations supported

(Lai et al., 1996; Ciardo and Siminiceanu, 2002)

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 21 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

EVMDDs
Arithmetic operations on EVMDDs

Given arithmetic operator ⊗ ∈ {+,−, ·, . . .}, EMVDDs E1, E2.
Compute EVMDD E = E1⊗E2.

Implementation: procedure apply(⊗,E1,E2):
Base case: single-node EVMDDs encoding constants
Inductive case: apply ⊗ recursively:

push down edge weights
recursively apply ⊗ to corresponding children
pull up excess edge weights from children

Time complexity [Lai et al., 1996]:
additive operations: product of input EVMDD sizes
in general: exponential

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 22 / 64



Background

Compilation

Relaxations

Abstractions

Summary

Section

Compilation

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 23 / 64



Background

Compilation

Relaxations

Abstractions

Summary

EVMDD-Based Action Compilation

Example (EVMDD-based action compilation)
Let a = 〈pre,eff〉, costa = xy2 + z+2.
Auxiliary variables:

One semaphore variable σ with Dσ = {0,1}
for entire planning task.
One auxiliary variable α = αa with Dαa = {0,1,2,3,4}
for action a.

Replace a by new auxiliary actions (similarly for other actions).

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 24 / 64



Background

Compilation

Relaxations

Abstractions

Summary

EVMDD-Based Action Compilation

Example (EVMDD-based action compilation, ctd.)

x

y

z

0

2

0

0
0

1

4

2

1
1

0

0

1

1

0

0

α = 0

α = 1

α = 2

α = 3

α = 4

apre = 〈pre∧σ = 0∧α = 0,

σ = 1∧α = 1〉, cost= 2

a1,x=0 = 〈α = 1∧ x = 0, α = 3〉, cost= 0

a1,x=1 = 〈α = 1∧ x = 1, α = 2〉, cost= 0

a2,y=0 = 〈α = 2∧ y = 0, α = 3〉, cost= 0

a2,y=1 = 〈α = 2∧ y = 1, α = 3〉, cost= 1

a2,y=2 = 〈α = 2∧ y = 2, α = 3〉, cost= 4

a3,z=0 = 〈α = 3∧ z = 0, α = 4〉, cost= 0

a3,z=1 = 〈α = 3∧ z = 1, α = 4〉, cost= 1

aeff = 〈α = 4, eff∧σ = 0∧α = 0〉, cost= 0

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 25 / 64



Background

Compilation

Relaxations

Abstractions

Summary

EVMDD-Based Action Compilation

Let Π be an SDAC-task and Π′ the result of EVMDD-based action
compilation applied to Π.

Proposition
Π′ has only state-independent costs.

Proposition
Size of Π′ is polynomial in size of Π times size of largest EVMDD
used in compilation.

Proposition
Π and Π′ admit the same plans (modulo replacement of actions
by action sequences). Optimal plan costs are preserved.

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 26 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

SummarySection

Relaxations

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 27 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Relaxation Heuristics

We know: Delete-relaxation heuristics informative in classical
planning.

Question: Also informative in SDAC planning?

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 28 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Relaxation Heuristics

Definition (Classical additive heuristic hadd)

hadd
s (Facts) = ∑

fact∈Facts
hadd

s (fact)

hadd
s (fact) =

0 if fact ∈ s
min

achiever a of fact
[hadd

s (pre(a))+ costa] otherwise

Question: How to generalize hadd to SDAC?

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 29 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Relaxations with SDAC

Example

a = 〈>, x=1〉 costa = 2−2y

b = 〈>, y=1〉 costb = 1

s = {x 7→ 0,y 7→ 0}
hadd

s (y=1) =1

hadd
s (x=1) =?

00 10
a : 2

00 01 11
b : 1 a : 0 ⇒ cheaper!

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 30 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Relaxations with SDAC

Example

a = 〈>, x=1〉 costa = 2−2y

b = 〈>, y=1〉 costb = 1

s = {x 7→ 0,y 7→ 0}
hadd

s (y=1) =1

hadd
s (x=1) =?

00 10
a : 2

00 01 11
b : 1 a : 0 ⇒ cheaper!

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 30 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Relaxations with SDAC

Example

a = 〈>, x=1〉 costa = 2−2y

b = 〈>, y=1〉 costb = 1

s = {x 7→ 0,y 7→ 0}
hadd

s (y=1) =1

hadd
s (x=1) =?

00 10
a : 2

00 01 11
b : 1 a : 0 ⇒ cheaper!

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 30 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Relaxations with SDAC

Minimize over all situations where a is applicable.

Definition (Additive heuristic hadd for SDAC)

hadd
s (fact) =

0 if fact ∈ s
min

achiever a of fact
[hadd

s (pre(a))+ costa] otherwise

Sa: set of partial states over variables in cost function

|Sa| exponential in number of variables in cost function

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 31 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Relaxations with SDAC

Minimize over all situations where a is applicable.

Definition (Additive heuristic hadd for SDAC)

hadd
s (fact) =

0 if fact ∈ s
min

achiever a of fact
[hadd

s (pre(a))+Costsa] otherwise

Costsa = min
ŝ∈Sa

[costa(ŝ)+hadd
s (ŝ)]

Sa: set of partial states over variables in cost function

|Sa| exponential in number of variables in cost function

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 31 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Relaxations with SDAC

Properties of hadd for SDAC:
Good: classical hadd on compiled task =

generalized hadd on SDAC-task
Bad: exponential blow-up

Computing hadd for SDAC:
Option 1: Compute classical hadd on compiled task.
Option 2: Compute Costsa directly.

Plug EVMDDs as subgraphs into RPG
 efficient computation of hadd

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 32 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Option 2: RPG Compilation

Input

x

y

z

0, Output

x=0

10

x=1

0

y=0

6

y=1

∞

y=2

1

z=0

2

z=1

2

∨

2

∨

2∨

12

∨

7

∨

9

∧ +2

2

∧ +0

12

∧ +0

2

∧ +0

8

∧ +1

∞

∧ +4

7
∧+0

18

∧+0

∞

∧+0

13

∧+0

9

∧+1

10

costa = xy2 + z+2

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 33 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Option 2: RPG Compilation

Input

x

y

z

0, Output

x=0

10

x=1

0

y=0

6

y=1

∞

y=2

1

z=0

2

z=1

2

∨

2

∨

2∨

12

∨

7

∨

9

∧ +2

2

∧ +0

12

∧ +0

2

∧ +0

8

∧ +1

∞

∧ +4

7
∧+0

18

∧+0

∞

∧+0

13

∧+0

9

∧+1

10

variable nodes become
∨-nodes
weights become ∧-nodes

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 33 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Option 2: RPG Compilation

Input

x

y

z

0, Output

x=0

10

x=1

0

y=0

6

y=1

∞

y=2

1

z=0

2

z=1

2

∨

2

∨

2∨

12

∨

7

∨

9

∧ +2

2

∧ +0

12

∧ +0

2

∧ +0

8

∧ +1

∞

∧ +4

7
∧+0

18

∧+0

∞

∧+0

13

∧+0

9

∧+1

10

Augment with input nodes

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 33 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Option 2: RPG Compilation

Input

x

y

z

0, Output

x=0

10

x=1

0

y=0

6

y=1

∞

y=2

1

z=0

2

z=1

2

∨

2

∨

2

∨

12

∨

7

∨

9

∧ +2

2

∧ +0

12

∧ +0

2

∧ +0

8

∧ +1

∞

∧ +4

7

∧+0

18

∧+0

∞

∧+0

13

∧+0

9

∧+1

10

Ensure complete
evaluation

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 33 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Option 2: Computing Costsa

Input

x

y

z

0, Output

x=0
10

x=1
0

y=0
6

y=1
∞

y=2
1

z=0
2

z=1
2

∨

2

∨

2

∨

12

∨

7

∨

9

∧ +2

2

∧ +0

12

∧ +0

2

∧ +0

8

∧ +1

∞

∧ +4

7

∧+0

18

∧+0

∞

∧+0

13

∧+0

9

∧+1

10

Insert hadd values

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 33 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Option 2: Computing Costsa

Input

x

y

z

0, Output

x=0
10

x=1
0

y=0
6

y=1
∞

y=2
1

z=0
2

z=1
2

∨

2

∨

2

∨

12

∨

7

∨

9

∧ +2

2

∧ +0

12

∧ +0

2

∧ +0

8

∧ +1

∞

∧ +4

7

∧+0

18

∧+0

∞

∧+0

13

∧+0

9

∧+1

10

Evaluate nodes:

∧: ∑(parents) + weight

∨: min(parents)

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 33 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Option 2: Computing Costsa

Input

x

y

z

0, Output

x=0
10

x=1
0

y=0
6

y=1
∞

y=2
1

z=0
2

z=1
2

∨

2

∨

2

∨

12

∨

7

∨

9

∧ +22

∧ +0

12

∧ +0

2

∧ +0

8

∧ +1

∞

∧ +4

7

∧+0

18

∧+0

∞

∧+0

13

∧+0

9

∧+1

10

Evaluate nodes:

∧: ∑(parents) + weight

∨: min(parents)

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 33 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Option 2: Computing Costsa

Input

x

y

z

0, Output

x=0
10

x=1
0

y=0
6

y=1
∞

y=2
1

z=0
2

z=1
2

∨
2

∨

2

∨

12

∨

7

∨

9

∧ +22

∧ +0

12

∧ +0

2

∧ +0

8

∧ +1

∞

∧ +4

7

∧+0

18

∧+0

∞

∧+0

13

∧+0

9

∧+1

10

Evaluate nodes:

∧: ∑(parents) + weight

∨: min(parents)

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 33 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Option 2: Computing Costsa

Input

x

y

z

0, Output

x=0
10

x=1
0

y=0
6

y=1
∞

y=2
1

z=0
2

z=1
2

∨
2

∨

2

∨

12

∨

7

∨

9

∧ +22

∧ +012 ∧ +02

∧ +0

8

∧ +1

∞

∧ +4

7

∧+0

18

∧+0

∞

∧+0

13

∧+0

9

∧+1

10

Evaluate nodes:

∧: ∑(parents) + weight

∨: min(parents)

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 33 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Option 2: Computing Costsa

Input

x

y

z

0, Output

x=0
10

x=1
0

y=0
6

y=1
∞

y=2
1

z=0
2

z=1
2

∨
2

∨2∨12

∨

7

∨

9

∧ +22

∧ +012 ∧ +02

∧ +0

8

∧ +1

∞

∧ +4

7

∧+0

18

∧+0

∞

∧+0

13

∧+0

9

∧+1

10

Evaluate nodes:

∧: ∑(parents) + weight

∨: min(parents)

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 33 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Option 2: Computing Costsa

Input

x

y

z

0, Output

x=0
10

x=1
0

y=0
6

y=1
∞

y=2
1

z=0
2

z=1
2

∨
2

∨2∨12

∨

7

∨

9

∧ +22

∧ +012 ∧ +02

∧ +0
8

∧ +1
∞

∧ +4
7

∧+0
18

∧+0
∞

∧+0
13

∧+0

9

∧+1

10

Evaluate nodes:

∧: ∑(parents) + weight

∨: min(parents)

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 33 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Option 2: Computing Costsa

Input

x

y

z

0, Output

x=0
10

x=1
0

y=0
6

y=1
∞

y=2
1

z=0
2

z=1
2

∨
2

∨2∨12

∨
7

∨

9

∧ +22

∧ +012 ∧ +02

∧ +0
8

∧ +1
∞

∧ +4
7

∧+0
18

∧+0
∞

∧+0
13

∧+0

9

∧+1

10

Evaluate nodes:

∧: ∑(parents) + weight

∨: min(parents)

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 33 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Option 2: Computing Costsa

Input

x

y

z

0, Output

x=0
10

x=1
0

y=0
6

y=1
∞

y=2
1

z=0
2

z=1
2

∨
2

∨2∨12

∨
7

∨

9

∧ +22

∧ +012 ∧ +02

∧ +0
8

∧ +1
∞

∧ +4
7

∧+0
18

∧+0
∞

∧+0
13

∧+0
9

∧+1
10

Evaluate nodes:

∧: ∑(parents) + weight

∨: min(parents)

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 33 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Option 2: Computing Costsa

Input

x

y

z

0, Output

x=0
10

x=1
0

y=0
6

y=1
∞

y=2
1

z=0
2

z=1
2

∨
2

∨2∨12

∨
7

∨9

∧ +22

∧ +012 ∧ +02

∧ +0
8

∧ +1
∞

∧ +4
7

∧+0
18

∧+0
∞

∧+0
13

∧+0
9

∧+1
10

Evaluate nodes:

∧: ∑(parents) + weight

∨: min(parents)

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 33 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Option 2: Computing Costsa

Input

x

y

z

0, Output

x=0
10

x=1
0

y=0
6

y=1
∞

y=2
1

z=0
2

z=1
2

∨
2

∨2∨12

∨
7

∨9

∧ +22

∧ +012 ∧ +02

∧ +0
8

∧ +1
∞

∧ +4
7

∧+0
18

∧+0
∞

∧+0
13

∧+0
9

∧+1
10

Costsa =
min
ŝ∈Sa

[costa(ŝ)+hadds (ŝ)]

costa = xy2 + z+2

ŝ = {x 7→ 1,y 7→ 2,z 7→ 0}

costa(ŝ) =
1 ·22 +0+2 = 6

= 2+0+4+0

hadds (ŝ) = 0+1+2 = 3

Costsa = 6+3 = 9

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 33 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Option 2: Computing Costsa

Input

x

y

z

0, Output

x=0
10

x=1
0

y=0
6

y=1
∞

y=2
1

z=0
2

z=1
2

∨
2

∨2∨12

∨
7

∨9

∧ +22

∧ +012 ∧ +02

∧ +0
8

∧ +1
∞

∧ +4
7

∧+0
18

∧+0
∞

∧+0
13

∧+0
9

∧+1
10

Costsa =
min
ŝ∈Sa

[costa(ŝ)+hadds (ŝ)]

costa = xy2 + z+2

ŝ = {x 7→ 1,y 7→ 2,z 7→ 0}

costa(ŝ) =
1 ·22 +0+2 = 6

= 2+0+4+0

hadds (ŝ) = 0+1+2 = 3

Costsa = 6+3 = 9

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 33 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Option 2: Computing Costsa

Input

x

y

z

0, Output

x=0
10

x=1
0

y=0
6

y=1
∞

y=2
1

z=0
2

z=1
2

∨
2

∨2∨12

∨
7

∨9

∧ +22

∧ +012 ∧ +02

∧ +0
8

∧ +1
∞

∧ +4
7

∧+0
18

∧+0
∞

∧+0
13

∧+0
9

∧+1
10

Costsa =
min
ŝ∈Sa

[costa(ŝ)+hadds (ŝ)]

costa = xy2 + z+2

ŝ = {x 7→ 1,y 7→ 2,z 7→ 0}

costa(ŝ) =
1 ·22 +0+2 = 6

= 2+0+4+0

hadds (ŝ) = 0+1+2 = 3

Costsa = 6+3 = 9

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 33 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Option 2: Computing Costsa

Input

x

y

z

0, Output

x=0
10

x=1
0

y=0
6

y=1
∞

y=2
1

z=0
2

z=1
2

∨
2

∨2∨12

∨
7

∨9

∧ +22

∧ +012 ∧ +02

∧ +0
8

∧ +1
∞

∧ +4
7

∧+0
18

∧+0
∞

∧+0
13

∧+0
9

∧+1
10

Costsa =
min
ŝ∈Sa

[costa(ŝ)+hadds (ŝ)]

costa = xy2 + z+2

ŝ = {x 7→ 1,y 7→ 2,z 7→ 0}

costa(ŝ) =
1 ·22 +0+2 = 6

= 2+0+4+0

hadds (ŝ) = 0+1+2 = 3

Costsa = 6+3 = 9

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 33 / 64



Background

Compilation

Relaxations
Relaxed Planning
Graph

Abstractions

Summary

Additive Heuristic

RPG compilation:
RPG subgraph in each layer for each action
Connect subgraphs with precondition graphs
Link outputs to next proposition layer

Good: classical hadd on compiled task =
generalized hadd on SDAC-task =
cost value computed using RPG compilation

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 34 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Section

Abstractions

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 35 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Abstraction Heuristics

Question: Why consider abstraction heuristics?

Answer:
admissibility
 optimality

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 36 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Abstraction Heuristics

a : 1

a : 2

a : ?

Question: What are the abstract action costs?

Answer: For admissibility, abstract cost of a should be

costa(sabs) = min
concrete state s
abstracted to sabs

costa(s).

Problem: exponentially many states in minimization
Aim: Compute costa(sabs) efficiently (given EVMDD for costa(s)).

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 37 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Abstraction Heuristics

a : 1

a : 2

a : ?

Question: What are the abstract action costs?

Answer: For admissibility, abstract cost of a should be

costa(sabs) = min
concrete state s
abstracted to sabs

costa(s).

Problem: exponentially many states in minimization
Aim: Compute costa(sabs) efficiently (given EVMDD for costa(s)).

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 37 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Abstraction Heuristics

a : 1

a : 2

a : 1

Question: What are the abstract action costs?

Answer: For admissibility, abstract cost of a should be

costa(sabs) = min
concrete state s
abstracted to sabs

costa(s).

Problem: exponentially many states in minimization
Aim: Compute costa(sabs) efficiently (given EVMDD for costa(s)).

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 37 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Abstraction Heuristics

a : 1

a : 2

a : 1

Question: What are the abstract action costs?

Answer: For admissibility, abstract cost of a should be

costa(sabs) = min
concrete state s
abstracted to sabs

costa(s).

Problem: exponentially many states in minimization
Aim: Compute costa(sabs) efficiently (given EVMDD for costa(s)).
June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 37 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Cartesian Abstractions

We will see: possible if the abstraction is Cartesian or coarser.
(Includes projections and domain abstractions.)

Definition (Cartesian abstraction)
A set of states sabs is Cartesian if it is of the form

D1×·· ·×Dn,

where Di ⊆Di for all i = 1, . . . ,n.
An abstraction is Cartesian if all abstract states are Cartesian sets.

[Seipp and Helmert, 2013]

Intuition: Variables are abstracted independently.
 exploit independence when computing abstract costs!

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 38 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Cartesian Abstractions

We will see: possible if the abstraction is Cartesian or coarser.
(Includes projections and domain abstractions.)

Definition (Cartesian abstraction)
A set of states sabs is Cartesian if it is of the form

D1×·· ·×Dn,

where Di ⊆Di for all i = 1, . . . ,n.
An abstraction is Cartesian if all abstract states are Cartesian sets.

[Seipp and Helmert, 2013]

Intuition: Variables are abstracted independently.
 exploit independence when computing abstract costs!
June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 38 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Cartesian Abstractions

Example (Cartesian abstraction)

Cartesian abstraction over x, y

Cost x+ y+1
(edges consistent with sabs)

sabs

00 01 02

10 11 12

20 21 22

x = 0

x = 1

x = 2

y = 0 y = 1 y = 2

cost= 4 cost= 5

x

y

0

1

0

0

1

1

2

2

2

2

1

1

0

0

min = 1

min = 3

min = 4

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 39 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Cartesian Abstractions

Example (Cartesian abstraction)

Cartesian abstraction over x, y
Cost x+ y+1
(edges consistent with sabs)

sabs

00 01 02

10 11 12

20 21 22

x = 0

x = 1

x = 2

y = 0 y = 1 y = 2

cost= 4 cost= 5

x

y

0

1

0

0

1

1

2

2

2

2

1

1

0

0

min = 1

min = 3

min = 4

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 39 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Cartesian Abstractions

Example (Cartesian abstraction)

Cartesian abstraction over x, y
Cost x+ y+1
(edges consistent with sabs)

sabs

00 01 02

10 11 12

20 21 22

x = 0

x = 1

x = 2

y = 0 y = 1 y = 2

cost= 4 cost= 5

x

y

0

1

0

0

1

1

2

2

2

2

1

1

0

0

min = 1

min = 3

min = 4

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 39 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Cartesian Abstractions

Example (Cartesian abstraction)

Cartesian abstraction over x, y
Cost x+ y+1
(edges consistent with sabs)

sabs

00 01 02

10 11 12

20 21 22

x = 0

x = 1

x = 2

y = 0 y = 1 y = 2

cost= 4 cost= 5

x

y

0

1

0

0

1

1

2

2

2

2

1

1

0

0

min = 1

min = 3

min = 4

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 39 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Cartesian Abstractions

Example (Cartesian abstraction)

Cartesian abstraction over x, y
Cost x+ y+1
(edges consistent with sabs)

sabs

00 01 02

10 11 12

20 21 22

x = 0

x = 1

x = 2

y = 0 y = 1 y = 2

cost= 4 cost= 5

x

y

0

1

0

0

1

1

2

2

2

2

1

1

0

0

min = 1

min = 3

min = 4

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 39 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Cartesian Abstractions

Example (Cartesian abstraction)

Cartesian abstraction over x, y
Cost x+ y+1
(edges consistent with sabs)

sabs

00 01 02

10 11 12

20 21 22

x = 0

x = 1

x = 2

y = 0 y = 1 y = 2

cost= 4 cost= 5

x

y

0

1

0

0

1

1

2

2

2

2

1

1

0

0

min = 1

min = 3

min = 4

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 39 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Cartesian Abstractions

What happens here? or:

Why does the topsort EVMDD traversal correctly compute
costa(sabs)?

1 For each Cartesian state sabs and each variable x,
each value d ∈ Dx is either consistent with sabs or not.

2 This implies: at all decision nodes associated with variable x,
some outgoing edges are enabled, others are disabled.
This is independent from all other decision nodes/variables.

3 This allows local minimizations over linearly many edges
instead of global minimization over exponentially many paths
in the EVMDD when computing minimum costs.

 polynomial in EVMDD size!

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 40 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Cartesian Abstractions
Not Cartesian!

If abstraction not Cartesian: two variables can be
independent in cost function ( compact EVMDD), but
dependent in abstraction.

 cannot consider independent parts of the EVMDD separately.

Example (Non-Cartesian abstraction)
cost : x+ y+1, cost(sabs) = 2, local minim.: 1 underestimate!

sabs = (x 6= y)

00 01 02

10 11 12

20 21 22

x = 0

x = 1

x = 2

y = 0 y = 1 y = 2

x

y

0

1

0

0

1

1

2

2

2

2

1

1

0

0

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 41 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Cartesian Abstractions
Not Cartesian!

If abstraction not Cartesian: two variables can be
independent in cost function ( compact EVMDD), but
dependent in abstraction.

 cannot consider independent parts of the EVMDD separately.

Example (Non-Cartesian abstraction)
cost : x+ y+1, cost(sabs) = 2, local minim.: 1 underestimate!

sabs = (x 6= y)

00 01 02

10 11 12

20 21 22

x = 0

x = 1

x = 2

y = 0 y = 1 y = 2

x

y

0

1

0

0

1

1

2

2

2

2

1

1

0

0

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 41 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Counterexample-Guided Abstraction
Refinement

Wanted: principled way of computing Cartesian abstractions.

 Counterexample-Guided Abstraction Refinement (CEGAR)

Initial
abstraction

Search
plan

Analyze
plan

Refine
abstraction

no plan
unsolvable

plan

no flaws
plan found

flaws

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 42 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Counterexample-Guided Abstraction
Refinement

Possible flaws in abstract plan:
1 Concrete state does not fit abstract state

(concrete and abstract traces diverge)
2 Action not applicable in concrete state
3 Trace completed, but goal not reached

Here, we need to consider a further type of flaw:
4 Cost-mismatch flaw: Action more costly in concrete state

than in abstract state

 resolve cost-mismatch flaws with additional refinement.

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 43 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Counterexample-Guided Abstraction
Refinement

Possible flaws in abstract plan:
1 Concrete state does not fit abstract state

(concrete and abstract traces diverge)
2 Action not applicable in concrete state
3 Trace completed, but goal not reached

Here, we need to consider a further type of flaw:
4 Cost-mismatch flaw: Action more costly in concrete state

than in abstract state

 resolve cost-mismatch flaws with additional refinement.

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 43 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Counterexample-Guided Abstraction
Refinement

Possible flaws in abstract plan:
1 Concrete state does not fit abstract state

(concrete and abstract traces diverge)
2 Action not applicable in concrete state
3 Trace completed, but goal not reached

Here, we need to consider a further type of flaw:
4 Cost-mismatch flaw: Action more costly in concrete state

than in abstract state

 resolve cost-mismatch flaws with additional refinement.

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 43 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Counterexample-Guided Abstraction
Refinement

Example (Cost-mismatch flaw)

b : 1 a : 1

a : 1
00 10

01

11

a = 〈>, x∧ y〉, costa = 2x+1 s0 = 10

b = 〈>, ¬x∧ y〉, costb = 1 s? = x∧ y

Optimal abstract plan: 〈a〉 (abstract cost 1)
This is also a concrete plan (concrete cost 3)
But optimal concrete plan: 〈b,a〉 (concr. and abstract cost 2)

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 44 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Counterexample-Guided Abstraction
Refinement

Example (Cost-mismatch flaw)

b : 1 a : 1

a : 1
00 10

01

11

a = 〈>, x∧ y〉, costa = 2x+1 s0 = 10

b = 〈>, ¬x∧ y〉, costb = 1 s? = x∧ y

Optimal abstract plan: 〈a〉 (abstract cost 1)

This is also a concrete plan (concrete cost 3)
But optimal concrete plan: 〈b,a〉 (concr. and abstract cost 2)

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 44 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Counterexample-Guided Abstraction
Refinement

Example (Cost-mismatch flaw)

b : 1 a : 1

a : 1
00 10

01

11

a = 〈>, x∧ y〉, costa = 2x+1 s0 = 10

b = 〈>, ¬x∧ y〉, costb = 1 s? = x∧ y

Optimal abstract plan: 〈a〉 (abstract cost 1)
This is also a concrete plan (concrete cost 3)

But optimal concrete plan: 〈b,a〉 (concr. and abstract cost 2)

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 44 / 64



Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Counterexample-
Guided Abstraction
Refinement

Summary

Counterexample-Guided Abstraction
Refinement

Example (Cost-mismatch flaw)

b : 1 a : 1

a : 1
00 10

01

11

a = 〈>, x∧ y〉, costa = 2x+1 s0 = 10

b = 〈>, ¬x∧ y〉, costb = 1 s? = x∧ y

Optimal abstract plan: 〈a〉 (abstract cost 1)
This is also a concrete plan (concrete cost 3)
But optimal concrete plan: 〈b,a〉 (concr. and abstract cost 2)

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 44 / 64



Background

Compilation

Relaxations

Abstractions

Summary

Section

Summary

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 45 / 64



Background

Compilation

Relaxations

Abstractions

Summary

Summary

Summary: EVMDDs
compact representation of cost functions
exhibit additive structure

Recall: motivating challenges
compiling SDAC away solved!

EVMDD-based action compilation
preserves hadd and habs

SDAC-aware h values possible!
hadd

RPG embedding
Cartesian abstraction heuristics

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 46 / 64



Background

Compilation

Relaxations

Abstractions

Summary

Future Work

Future Work:
Other delete-relaxation heuristics such as hFF

Static and dynamic EVMDD variable orders

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 47 / 64



Libraries

PDDL

Part II

Practice

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 48 / 64



Libraries
MEDDLY

pyevmdd

PDDL

Section

Libraries

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 49 / 64



Libraries
MEDDLY

pyevmdd

PDDL

EVMDD Libraries
MEDDLY

MEDDLY: Multi-terminal and Edge-valued
Decision Diagram LibrarY

Authors: Junaid Babar and Andrew Miner
Language: C++
License: open source (LGPLv3)
Advantages:

many different types of decision diagrams
mature and efficient

Disadvantages:
documentation

Code: http://meddly.sourceforge.net

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 50 / 64

http://meddly.sourceforge.net


Libraries
MEDDLY

pyevmdd

PDDL

EVMDD Libraries
pyevmdd

pyevmdd: EVMDD library for Python
Authors: RM and FG
Language: Python
License: open source (GPLv3)
Disadvantages:

restricted to EVMDDs
neither mature nor optimized

Purpose: our EVMDD playground
Code:
https://github.com/robertmattmueller/pyevmdd

Documentation:
http://pyevmdd.readthedocs.io/en/latest/

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 51 / 64

https://github.com/robertmattmueller/pyevmdd
http://pyevmdd.readthedocs.io/en/latest/


Libraries

PDDL

Section

PDDL

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 52 / 64



Libraries

PDDL

PDDL Representation

Usual way of representing costs in PDDL:
effects (increase (total-cost) (<expression>))

metric (minimize (total-cost))

Custom syntax:
Besides :parameters, :precondition, and :effect,
actions may have field
:cost (<expression>)

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 53 / 64



Libraries

PDDL

Gripper

initial state goal state

Colored rooms and balls
Cost of move increases if ball color differs from its room color
Goal did not change!

cost(move) = ∑
room

∑
ball

(at(ball,room)∧ (red(ball))∧ (blue(room))

+ ∑
room

∑
ball

(at(ball,room)∧ (blue(ball))∧ (red(room))

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 54 / 64



Libraries

PDDL

Colored Gripper

initial state goal state

Colored rooms and balls
Cost of move increases if ball color differs from its room color
Goal did not change!

cost(move) = ∑
room

∑
ball

(at(ball,room)∧ (red(ball))∧ (blue(room))

+ ∑
room

∑
ball

(at(ball,room)∧ (blue(ball))∧ (red(room))

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 54 / 64



Libraries

PDDL

Colored Gripper

initial state goal state

Colored rooms and balls
Cost of move increases if ball color differs from its room color
Goal did not change!

cost(move) = ∑
room

∑
ball

(at(ball,room)∧ (red(ball))∧ (blue(room))

+ ∑
room

∑
ball

(at(ball,room)∧ (blue(ball))∧ (red(room))

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 54 / 64



Libraries

PDDL

EVMDD-Based Action Compilation

Example (EVMDD-based action compilation)
Let a = 〈pre,eff〉, costa = xy2 + z+2.
Auxiliary variables:

One semaphore variable σ with Dσ = {0,1}
for entire planning task.
One auxiliary variable α = αa with Dαa = {0,1,2,3,4}
for action a.

Replace a by new auxiliary actions (similarly for other actions).

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 55 / 64



Libraries

PDDL

EVMDD-Based Action Compilation

Example (EVMDD-based action compilation, ctd.)

x

y

z

0

2

0

0
0

1

4

2

1
1

0

0

1

1

0

0

α = 0

α = 1

α = 2

α = 3

α = 4

apre = 〈pre∧σ = 0∧α = 0,

σ = 1∧α = 1〉, cost= 2

a1,x=0 = 〈α = 1∧ x = 0, α = 3〉, cost= 0

a1,x=1 = 〈α = 1∧ x = 1, α = 2〉, cost= 0

a2,y=0 = 〈α = 2∧ y = 0, α = 3〉, cost= 0

a2,y=1 = 〈α = 2∧ y = 1, α = 3〉, cost= 1

a2,y=2 = 〈α = 2∧ y = 2, α = 3〉, cost= 4

a3,z=0 = 〈α = 3∧ z = 0, α = 4〉, cost= 0

a3,z=1 = 〈α = 3∧ z = 1, α = 4〉, cost= 1

aeff = 〈α = 4, eff∧σ = 0∧α = 0〉, cost= 0

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 56 / 64



Libraries

PDDL

EVMDD-Based Action Compilation Tool

Disclaimer:
Not completely functional
Still some bugs

Uses pyevmdd
Language: Python
License: open source
Code: https:
//github.com/robertmattmueller/sdac-compiler

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 57 / 64

https://github.com/robertmattmueller/sdac-compiler
https://github.com/robertmattmueller/sdac-compiler


Part III

Acknowledgements

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 58 / 64



Acknowledgements

Acknowledgements:
Christian Muise, for taking the time to get our compiler
running in the cloud.
Erik Wacker, for working on the compiler.
Thomas Keller, for doing all the reasearch behind this tutorial
with us.

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 59 / 64



Part IV

References

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 60 / 64



References I

Blai Bonet and Hector Geffner.
Planning as heuristic search: New results.
In Proc. ECP, pages 359–371, 1999.

Blai Bonet, Gábor Loerincs, and Hector Geffner.
A robust and fast action selection mechanism for planning.
In Proc. AAAI, pages 714–719, 1997.

Junaid Badar and Andrew Miner.
MEDDLY: Multi-terminal and Edge-valued Decision Diagram
LibrarY.
http://meddly.sourceforge.net/, 2011.

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 61 / 64

http://meddly.sourceforge.net/


References II

Thomas Ball, Andreas Podelski, and Sriram K. Rajamani.
Boolean and Cartesian abstraction for model checking C
programs.
In Proc. TACAS, pages 268–283, 2001.

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and
Helmut Veith.
Counterexample-guided abstraction refinement.
In Proc. CAV, pages 154–169, 2000.

Gianfranco Ciardo and Radu Siminiceanu.
Using edge-valued decision diagrams for symbolic generation
of shortest paths.
In Proc. FMCAD, pages 256–273, 2002.

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 62 / 64



References III

Florian Geißer, Thomas Keller, and Robert Mattmüller.
Delete relaxations for planning with state-dependent action
costs.
In Proc. IJCAI, pages 1573–1579, 2015.

Florian Geißer, Thomas Keller, and Robert Mattmüller.
Abstractions for planning with state-dependent action costs.
In Proc. ICAPS, 2016.
Franc Ivankovic, Patrik Haslum, Sylvie Thiébaux, Vikas
Shivashankar, and Dana S. Nau.
Optimal planning with global numerical state constraints.
In Proc. ICAPS, pages 145–153, 2014.

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 63 / 64



References IV

Thomas Keller, Florian Pommerening, Jendrik Seipp, Florian
Geißer, and Robert Mattmüller.
State-dependent cost partitionings for Cartesian abstractions
in classical planning.
In Proc. IJCAI, 2016.
To appear.

Yung-Te Lai, Massoud Pedram, and Sarma B. K. Vrudhula.
Formal verification using edge-valued binary decision
diagrams.
IEEE Transactions on Computers, 45(2):247–255, 1996.

Jendrik Seipp and Malte Helmert.
Counterexample-guided Cartesian abstraction refinement.
In Proc. ICAPS, pages 347–351, 2013.

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 64 / 64


	Theory
	Background
	State-Dependent Action Costs
	Edge-Valued Multi-Valued Decision Diagrams

	Compilation
	Relaxations
	Relaxed Planning Graph

	Abstractions
	Cartesian Abstractions
	Counterexample-Guided Abstraction Refinement

	Summary

	Practice
	Libraries
	MEDDLY
	pyevmdd

	PDDL

	Acknowledgements
	References

