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What are State-Dependent Action Costs?

London@(0,0)

Freiburg

Madrid

Paris

Istanbul

14
5 10 32

Action costs: unit constant state-dependent

cost(flyTo(London)) = |xLondon− xcurrent|+ |yLondon− ycurrent|
= |xcurrent|+ |ycurrent|.
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What are State-Dependent Action Costs?

London@(0,0)

Freiburg

Madrid

Paris

Istanbul

14
5 10 32

Action costs: unit constant state-dependent

cost(fly(Madrid,London)) = 1, cost(fly(Paris,London)) = 1,

cost(fly(Freiburg,London)) = 1, cost(fly(Istanbul,London)) = 1.
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What are State-Dependent Action Costs?

London@(0,0)

Freiburg

Madrid

Paris

Istanbul

14
5 10 32

Action costs: unit constant state-dependent

cost(fly(Madrid,London)) = 14, cost(fly(Paris,London)) = 5,

cost(fly(Freiburg,London)) = 10, cost(fly(Istanbul,London)) = 32.

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 4 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

What are State-Dependent Action Costs?

London@(0,0)

Freiburg

Madrid

Paris

Istanbul

14
5 10 32

Action costs: unit constant state-dependent

cost(flyTo(London)) = |xLondon− xcurrent|+ |yLondon− ycurrent|
= |xcurrent|+ |ycurrent|.

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 4 / 64



Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

Why Study State-Dependent Action Costs?

Human perspective:
“natural” and “elegant”
modeler-friendly less error-prone?

Machine perspective:
more structured exploit in algorithms?
fewer redundancies, exponentially more compact

Language support:
numeric PDDL, PDDL 3
RDDL, MDPs (state-dependent rewards!)

Applications:
modeling preferences and soft goals
PSR domain

(Abbreviation: SDAC = state-dependent action costs)
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Handling State-Dependent Action Costs

Good news:
Computing g values in forward search still easy.

Challenge:
But what about SDAC-aware h values?
Or can we simply compile SDAC away?

This tutorial:
Proposed answers to these challenges.
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Handling State-Dependent Action Costs

Roadmap:
1 Look at compilations.
2 This leads to edge-valued multi-valued decision diagrams

(EVMDDs) as data structure to represent cost functions.
3 Based on EVMDDs, formalize and discuss:

compilations
relaxation heuristics
abstraction heuristics
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State-Dependent Action Costs
Running Example

Example (Household domain)
Actions:

vacuumFloor = 〈>, floorClean〉
washDishes = 〈>, dishesClean〉

doHousework = 〈>, floorClean∧dishesClean〉

Cost functions:

costvacuumFloor = [¬floorClean] ·2
costwashDishes = [¬dishesClean] · (1+2 · [¬haveDishwasher])

costdoHousework = costvacuumFloor + costwashDishes
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State-Dependent Action Costs
Compilations

Different ways of compiling SDAC away:
Compilation I: “Parallel Action Decomposition”
Compilation II: “Purely Sequential Action Decomposition”
Compilation III: “EVMDD-Based Action Decomposition”

(combination of Compilations I and II)
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Compilation I: “Parallel Action Decomposition”

Example
dishesClean, haveDishwasher: 0

dishesClean, ¬haveDishwasher: 0

¬dishesClean, haveDishwasher: 1

¬dishesClean, ¬haveDishwasher: 3

washDishes( dC, hD) = 〈 dC∧ hD, dC〉, cost= 0

washDishes( dC,¬hD) = 〈 dC∧¬hD, dC〉, cost= 0

washDishes(¬dC, hD) = 〈¬dC∧ hD, dC〉, cost= 1

washDishes(¬dC,¬hD) = 〈¬dC∧¬hD, dC〉, cost= 3
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Compilation I: “Parallel Action Decomposition”

Compilation I
Transform each action into multiple actions:

one for each partial state relevant to cost function
add partial state to precondition
use cost for partial state as constant cost

Properties:
" always possible
% exponential blow-up

Question: Exponential blow-up avoidable? Compilation II
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Compilation II: “Purely Sequential Action Decomposition”

Example
Assume we own a dishwasher:

costdoHousework = 2 · [¬floorClean]+ [¬dishesClean]

floorClean: 0

¬floorClean: 2

dishesClean: 0

¬dishesClean: 1

doHousework1( fC) = 〈 fC, fC〉, cost= 0

doHousework1(¬fC) = 〈¬fC, fC〉, cost= 2

doHousework2( dC) = 〈 dC, dC〉, cost= 0

doHousework2(¬dC) = 〈¬dC, dC〉, cost= 1
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Compilation II: “Purely Sequential Action Decomposition”

Compilation II
If costs additively decomposable:

high-level actions ≈ macro actions
decompose into sequential micro actions

Properties:
" linear blow-up
% not always possible
a plan lengths not preserved, costs preserved
a blow-up in search space action ordering!
a attention: all partial effects at end!

Question: Can this always work (kind of)? Compilation III
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Compilation III: “EVMDD-Based Action Decomposition”

Example
costdoHousework = [¬floorClean] ·2+

[¬dishesClean] · (1+2 · [¬haveDishwasher])

floorClean: 0

¬floorClean: 2

dishesClean, haveDishwasher: 0

dishesClean, ¬haveDishwasher: 0

¬dishesClean, haveDishwasher: 1

¬dishesClean, ¬haveDishwasher: 3

Simplify right-hand part of diagram:
Branch over single variable at a time.
Exploit: haveDishwasher irrelevant if dishesClean is true.
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Compilation III: “EVMDD-Based Action Decomposition”

Example (ctd.)

floorClean: 0

¬floorClean: 2

dishesClean: 0

¬dishesClean: 1

haveDishwasher: 0

¬haveDishwasher: 2

Later:
Compiled actions
Auxiliary variables to enforce action ordering
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Compilation III: “EVMDD-Based Action Decomposition”

Compilation III
exploit as much additive decomposability as possible
multiply out variable domains where inevitable
Technicalities:

fix variable ordering
perform Shannon and isomorphism reduction

Properties:
" always possible
a worst-case exponential blow-up, but as good as it gets
a plan lengths not preserved, costs preserved
a as before: action ordering, all partial effects at end!
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Compilation III: “EVMDD-Based Action Decomposition”

Compilation III provides optimal combination of sequential and
parallel action decomposition, given fixed variable ordering.

Question: How to find such decompositions automatically?

Answer: Figure for Compilation III basically a reduced ordered
edge-valued multi-valued decision diagram (EVMDD)!

[Lai et al., 1996; Ciardo and Siminiceanu, 2002]
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EVMDDs
Edge-Valued Multi-Valued Decision Diagrams

EVMDDs:
Decision diagrams for arithmetic functions
Decision nodes with associated decision variables
Edge weights: partial costs contributed by facts
Size of EVMDD compact in many “typical” cases

Properties:
" satisfy all requirements for Compilation III,

even (almost) uniquely determined by them
" already have well-established theory and tool support
" detect and exhibit additive structure in arithmetic functions
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EVMDDs
Edge-Valued Multi-Valued Decision Diagrams

Consequence:
represent cost functions as EVMDDs
exploit additive structure exhibited by them
draw on theory and tool support for EVMDDs

Two perspectives on EVMDDs:
graphs specifying how to decompose action costs
data structures encoding action costs

(used independently from compilations)
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Edge-Valued Multi-Valued Decision Diagrams

Example (EVMDD Evaluation)
costa = xy2 + z+2 Dx =Dz = {0,1}, Dy = {0,1,2}

x

y

z

0

2

0

0
0

1

4

2

1
1

0

0

1

1

0

0

Directed acyclic graph
Dangling incoming edge
Single terminal node 0
Decision nodes with:

decision variables
edge label
edge weights
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EVMDDs
Edge-Valued Multi-Valued Decision Diagrams

Example (EVMDD Evaluation)
costa = xy2 + z+2 Dx =Dz = {0,1}, Dy = {0,1,2}

x

y

z

0

2

0

0
0

1

4

2

1
1

0

0

1

1

0

0

s = {x 7→ 1, y 7→ 2, z 7→ 0}
costa(s) =

2+0+4+0 = 6
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Example (EVMDD Evaluation)
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s = {x 7→ 1, y 7→ 2, z 7→ 0}
costa(s) = 2+0+
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s = {x 7→ 1, y 7→ 2, z 7→ 0}
costa(s) = 2+0+4+
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EVMDDs
Edge-Valued Multi-Valued Decision Diagrams

Properties of EVMDDs:

" Existence for finitely many finite-domain variables
" Uniqueness/canonicity if reduced and ordered
" Basic arithmetic operations supported

(Lai et al., 1996; Ciardo and Siminiceanu, 2002)
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EVMDDs
Arithmetic operations on EVMDDs

Given arithmetic operator ⊗ ∈ {+,−, ·, . . .}, EMVDDs E1, E2.
Compute EVMDD E = E1⊗E2.

Implementation: procedure apply(⊗,E1,E2):
Base case: single-node EVMDDs encoding constants
Inductive case: apply ⊗ recursively:

push down edge weights
recursively apply ⊗ to corresponding children
pull up excess edge weights from children

Time complexity [Lai et al., 1996]:
additive operations: product of input EVMDD sizes
in general: exponential
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EVMDD-Based Action Compilation

Example (EVMDD-based action compilation)
Let a = 〈pre,eff〉, costa = xy2 + z+2.
Auxiliary variables:

One semaphore variable σ with Dσ = {0,1}
for entire planning task.
One auxiliary variable α = αa with Dαa = {0,1,2,3,4}
for action a.

Replace a by new auxiliary actions (similarly for other actions).
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EVMDD-Based Action Compilation

Example (EVMDD-based action compilation, ctd.)

x

y

z

0

2

0

0
0

1

4

2

1
1

0

0

1

1

0

0

α = 0

α = 1

α = 2

α = 3

α = 4

apre = 〈pre∧σ = 0∧α = 0,

σ = 1∧α = 1〉, cost= 2

a1,x=0 = 〈α = 1∧ x = 0, α = 3〉, cost= 0

a1,x=1 = 〈α = 1∧ x = 1, α = 2〉, cost= 0

a2,y=0 = 〈α = 2∧ y = 0, α = 3〉, cost= 0

a2,y=1 = 〈α = 2∧ y = 1, α = 3〉, cost= 1

a2,y=2 = 〈α = 2∧ y = 2, α = 3〉, cost= 4

a3,z=0 = 〈α = 3∧ z = 0, α = 4〉, cost= 0

a3,z=1 = 〈α = 3∧ z = 1, α = 4〉, cost= 1

aeff = 〈α = 4, eff∧σ = 0∧α = 0〉, cost= 0

June 13, 2016 Robert Mattmüller, Florian Geißer – Planning with State-Dependent Action Costs 25 / 64



Background

Compilation

Relaxations

Abstractions

Summary

EVMDD-Based Action Compilation

Let Π be an SDAC-task and Π′ the result of EVMDD-based action
compilation applied to Π.

Proposition
Π′ has only state-independent costs.

Proposition
Size of Π′ is polynomial in size of Π times size of largest EVMDD
used in compilation.

Proposition
Π and Π′ admit the same plans (modulo replacement of actions
by action sequences). Optimal plan costs are preserved.
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Relaxation Heuristics

We know: Delete-relaxation heuristics informative in classical
planning.

Question: Also informative in SDAC planning?
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Relaxation Heuristics

Definition (Classical additive heuristic hadd)

hadd
s (Facts) = ∑

fact∈Facts
hadd

s (fact)

hadd
s (fact) =

0 if fact ∈ s
min

achiever a of fact
[hadd

s (pre(a))+ costa] otherwise

Question: How to generalize hadd to SDAC?
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Relaxations with SDAC

Example

a = 〈>, x=1〉 costa = 2−2y

b = 〈>, y=1〉 costb = 1

s = {x 7→ 0,y 7→ 0}
hadd

s (y=1) =1

hadd
s (x=1) =?

00 10
a : 2

00 01 11
b : 1 a : 0 ⇒ cheaper!
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Relaxations with SDAC

Minimize over all situations where a is applicable.

Definition (Additive heuristic hadd for SDAC)

hadd
s (fact) =

0 if fact ∈ s
min

achiever a of fact
[hadd

s (pre(a))+ costa] otherwise

Sa: set of partial states over variables in cost function

|Sa| exponential in number of variables in cost function
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Relaxations with SDAC

Minimize over all situations where a is applicable.

Definition (Additive heuristic hadd for SDAC)

hadd
s (fact) =

0 if fact ∈ s
min

achiever a of fact
[hadd

s (pre(a))+Costsa] otherwise

Costsa = min
ŝ∈Sa

[costa(ŝ)+hadd
s (ŝ)]

Sa: set of partial states over variables in cost function

|Sa| exponential in number of variables in cost function
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Relaxations with SDAC

Properties of hadd for SDAC:
Good: classical hadd on compiled task =

generalized hadd on SDAC-task
Bad: exponential blow-up

Computing hadd for SDAC:
Option 1: Compute classical hadd on compiled task.
Option 2: Compute Costsa directly.

Plug EVMDDs as subgraphs into RPG
 efficient computation of hadd
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Option 2: RPG Compilation

Input

x

y

z

0, Output

x=0

10

x=1

0

y=0

6

y=1

∞

y=2

1

z=0

2

z=1

2

∨

2

∨

2∨

12

∨

7

∨

9

∧ +2

2

∧ +0

12

∧ +0

2

∧ +0

8

∧ +1

∞

∧ +4

7
∧+0

18

∧+0

∞

∧+0

13

∧+0

9

∧+1

10

costa = xy2 + z+2
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Option 2: RPG Compilation

Input

x

y

z

0, Output

x=0

10

x=1

0

y=0

6

y=1

∞

y=2

1

z=0

2

z=1

2

∨

2

∨

2∨

12

∨

7

∨

9

∧ +2

2

∧ +0

12

∧ +0

2

∧ +0

8

∧ +1

∞

∧ +4

7
∧+0

18

∧+0

∞

∧+0

13

∧+0

9

∧+1

10

variable nodes become
∨-nodes
weights become ∧-nodes
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Evaluate nodes:

∧: ∑(parents) + weight

∨: min(parents)
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Costsa =
min
ŝ∈Sa

[costa(ŝ)+hadds (ŝ)]

costa = xy2 + z+2

ŝ = {x 7→ 1,y 7→ 2,z 7→ 0}

costa(ŝ) =
1 ·22 +0+2 = 6

= 2+0+4+0

hadds (ŝ) = 0+1+2 = 3

Costsa = 6+3 = 9
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Additive Heuristic

RPG compilation:
RPG subgraph in each layer for each action
Connect subgraphs with precondition graphs
Link outputs to next proposition layer

Good: classical hadd on compiled task =
generalized hadd on SDAC-task =
cost value computed using RPG compilation
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Section

Abstractions
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Abstraction Heuristics

Question: Why consider abstraction heuristics?

Answer:
admissibility
 optimality
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Abstraction Heuristics

a : 1

a : 2

a : ?

Question: What are the abstract action costs?

Answer: For admissibility, abstract cost of a should be

costa(sabs) = min
concrete state s
abstracted to sabs

costa(s).

Problem: exponentially many states in minimization
Aim: Compute costa(sabs) efficiently (given EVMDD for costa(s)).
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Summary

Cartesian Abstractions

We will see: possible if the abstraction is Cartesian or coarser.
(Includes projections and domain abstractions.)

Definition (Cartesian abstraction)
A set of states sabs is Cartesian if it is of the form

D1×·· ·×Dn,

where Di ⊆Di for all i = 1, . . . ,n.
An abstraction is Cartesian if all abstract states are Cartesian sets.

[Seipp and Helmert, 2013]

Intuition: Variables are abstracted independently.
 exploit independence when computing abstract costs!
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Cartesian Abstractions

Example (Cartesian abstraction)

Cartesian abstraction over x, y

Cost x+ y+1
(edges consistent with sabs)

sabs
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Cartesian Abstractions

What happens here? or:

Why does the topsort EVMDD traversal correctly compute
costa(sabs)?

1 For each Cartesian state sabs and each variable x,
each value d ∈ Dx is either consistent with sabs or not.

2 This implies: at all decision nodes associated with variable x,
some outgoing edges are enabled, others are disabled.
This is independent from all other decision nodes/variables.

3 This allows local minimizations over linearly many edges
instead of global minimization over exponentially many paths
in the EVMDD when computing minimum costs.

 polynomial in EVMDD size!
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Cartesian Abstractions
Not Cartesian!

If abstraction not Cartesian: two variables can be
independent in cost function ( compact EVMDD), but
dependent in abstraction.

 cannot consider independent parts of the EVMDD separately.

Example (Non-Cartesian abstraction)
cost : x+ y+1, cost(sabs) = 2, local minim.: 1 underestimate!

sabs = (x 6= y)
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Counterexample-Guided Abstraction
Refinement

Wanted: principled way of computing Cartesian abstractions.

 Counterexample-Guided Abstraction Refinement (CEGAR)

Initial
abstraction

Search
plan

Analyze
plan

Refine
abstraction

no plan
unsolvable

plan

no flaws
plan found

flaws
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Counterexample-Guided Abstraction
Refinement

Possible flaws in abstract plan:
1 Concrete state does not fit abstract state

(concrete and abstract traces diverge)
2 Action not applicable in concrete state
3 Trace completed, but goal not reached

Here, we need to consider a further type of flaw:
4 Cost-mismatch flaw: Action more costly in concrete state

than in abstract state

 resolve cost-mismatch flaws with additional refinement.
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Counterexample-Guided Abstraction
Refinement

Example (Cost-mismatch flaw)

b : 1 a : 1

a : 1
00 10

01

11

a = 〈>, x∧ y〉, costa = 2x+1 s0 = 10

b = 〈>, ¬x∧ y〉, costb = 1 s? = x∧ y

Optimal abstract plan: 〈a〉 (abstract cost 1)
This is also a concrete plan (concrete cost 3)
But optimal concrete plan: 〈b,a〉 (concr. and abstract cost 2)
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Summary: EVMDDs
compact representation of cost functions
exhibit additive structure

Recall: motivating challenges
compiling SDAC away solved!

EVMDD-based action compilation
preserves hadd and habs

SDAC-aware h values possible!
hadd

RPG embedding
Cartesian abstraction heuristics
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Future Work

Future Work:
Other delete-relaxation heuristics such as hFF

Static and dynamic EVMDD variable orders
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EVMDD Libraries
MEDDLY

MEDDLY: Multi-terminal and Edge-valued
Decision Diagram LibrarY

Authors: Junaid Babar and Andrew Miner
Language: C++
License: open source (LGPLv3)
Advantages:

many different types of decision diagrams
mature and efficient

Disadvantages:
documentation

Code: http://meddly.sourceforge.net
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EVMDD Libraries
pyevmdd

pyevmdd: EVMDD library for Python
Authors: RM and FG
Language: Python
License: open source (GPLv3)
Disadvantages:

restricted to EVMDDs
neither mature nor optimized

Purpose: our EVMDD playground
Code:
https://github.com/robertmattmueller/pyevmdd

Documentation:
http://pyevmdd.readthedocs.io/en/latest/
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Libraries

PDDL

PDDL Representation

Usual way of representing costs in PDDL:
effects (increase (total-cost) (<expression>))

metric (minimize (total-cost))

Custom syntax:
Besides :parameters, :precondition, and :effect,
actions may have field
:cost (<expression>)
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Gripper

initial state goal state

Colored rooms and balls
Cost of move increases if ball color differs from its room color
Goal did not change!

cost(move) = ∑
room

∑
ball

(at(ball,room)∧ (red(ball))∧ (blue(room))

+ ∑
room

∑
ball

(at(ball,room)∧ (blue(ball))∧ (red(room))
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EVMDD-Based Action Compilation

Example (EVMDD-based action compilation)
Let a = 〈pre,eff〉, costa = xy2 + z+2.
Auxiliary variables:

One semaphore variable σ with Dσ = {0,1}
for entire planning task.
One auxiliary variable α = αa with Dαa = {0,1,2,3,4}
for action a.

Replace a by new auxiliary actions (similarly for other actions).
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EVMDD-Based Action Compilation

Example (EVMDD-based action compilation, ctd.)

x

y

z

0

2

0

0
0

1

4

2

1
1

0

0

1

1

0

0

α = 0

α = 1

α = 2

α = 3

α = 4

apre = 〈pre∧σ = 0∧α = 0,

σ = 1∧α = 1〉, cost= 2

a1,x=0 = 〈α = 1∧ x = 0, α = 3〉, cost= 0

a1,x=1 = 〈α = 1∧ x = 1, α = 2〉, cost= 0

a2,y=0 = 〈α = 2∧ y = 0, α = 3〉, cost= 0

a2,y=1 = 〈α = 2∧ y = 1, α = 3〉, cost= 1

a2,y=2 = 〈α = 2∧ y = 2, α = 3〉, cost= 4

a3,z=0 = 〈α = 3∧ z = 0, α = 4〉, cost= 0

a3,z=1 = 〈α = 3∧ z = 1, α = 4〉, cost= 1

aeff = 〈α = 4, eff∧σ = 0∧α = 0〉, cost= 0
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EVMDD-Based Action Compilation Tool

Disclaimer:
Not completely functional
Still some bugs

Uses pyevmdd
Language: Python
License: open source
Code: https:
//github.com/robertmattmueller/sdac-compiler
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