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Abstract. Abstraction heuristics are a popular method to guide opti-
mal search algorithms in classical planning. Cost partitionings allow to
sum heuristic estimates admissibly by partitioning action costs among
the abstractions. We introduce state-dependent cost partitionings which
take context information of actions into account, and show that an op-
timal state-dependent cost partitioning dominates its state-independent
counterpart. We demonstrate the potential of state-dependent cost par-
titionings with a state-dependent variant of the recently proposed sat-
urated cost partitioning, and show that it can sometimes improve not
only over its state-independent counterpart, but even over the optimal
state-independent cost partitioning. 3
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1 Introduction

Abstraction heuristics [2,14] are a popular method to guide optimal heuristic
search algorithms in classical planning. Since a single abstraction often provides
poor guidance, we would like to combine the information from several abstrac-
tions admissibly. This can be accomplished either by maximizing over a set of
admissible heuristics, or even better, by adding admissible heuristics, provided
that one can guarantee that the sum of heuristic values is still admissible. This
can be guaranteed either by restricting oneself to additive abstractions [11,3], or
by cost partitioning [7,8]. The latter approach counts only some fraction of the
original cost of each action in each abstraction, such that the accumulated cost
of each action over all abstractions does not exceed its original cost.

Interesting instances of cost partitioning include optimal cost partitioning
that leads to highest possible accumulated costs per state, general cost parti-
tioning [12] that also allows negative costs, and saturated cost partitioning [15],

3 This extended abstract is based on an IJCAI 2016 paper by the same authors [9].
Full proofs can be found there and in an associated technical report [10].



where the cost partitioning is computed iteratively by “consuming” the minimum
costs in each abstraction such that the costs of all shortest paths are preserved.

In this paper, we show that even more information can be extracted from
a collection of abstractions if context information is taken into account and
abstract action costs are allowed to differ from state to state. To that end,
we define state-dependent cost partitioning and show that its optimal version
dominates optimal state-independent cost partitioning. Since computing optimal
state-dependent cost partitionings is usually infeasible, we also consider satu-
rated state-dependent cost partitioning, which is cheaper to compute. Whereas
saturated state-independent cost partitioning loses valuable information when
maximizing over all transitions incurred by the same action, saturated state-
dependent cost partitioning, where costs are consumed only in a given context,
does not suffer from this loss of information.

Besides the definition of state-dependent cost partitioning, the major contri-
bution of this paper is a complete analysis of theoretical dominance relationships
between the four combinations of optimal and saturated, and state-dependent
and state-independent cost partitionings.

2 Preliminaries

We consider SAS+ planning tasks [1]Π with the usual components, i. e., variables
V, actions A, initial state sI , and goal description s?. The set of states is denoted
with S. Applicability of actions and action sequences to states as well as the
result of their application is also defined as usual via preconditions and effects.
In addition, we allow non-negative action costs to be specified by cost functions
c : A → R+

0 . At several places in this paper, we are interested in costs that are
based on modified cost functions. An important aspect of this work are general
and state-dependent cost functions c : A×S → R that determine transition costs
c(a, s) that depend on the state s in addition to the action a that is applied.
Since state-dependent cost functions are more general, we define the following
concepts in terms of state-dependent instead of regular cost functions unless we
want to emphasize that the cost function of the original task is used.

An action sequence π = 〈a1, . . . , an〉 is an s-plan if it is applicable in s and
leads to a state satisfying the goal condition. It is a plan if it is an sI -plan. The
cost of s-plan π under cost function c is the sum of action costs along the induced
state sequence 〈s0, . . . , sn〉, i.e., c(π, s) =

∑n
i=1 c(ai, si−1). It is optimal under c

if it minimizes c(π, s). A heuristic function h estimates the cost of an optimal s-
plan under cost function c with values h(s, c) ∈ R∪{−∞,∞}. Note that we allow
negative heuristic values to support general cost partitioning [12]. A heuristic h
is called admissible if it never overestimates the true cost. A planning task Π
and a cost function c induce a weighted labeled transition system T in the usual
way. Edge weights in T are the (possibly state-dependent) action costs of the
planning task.

The core idea of abstraction heuristics is to collapse several states into a sin-
gle abstract state, which reduces the size of the transition system and allows the



computation of abstract goal distances that can be used as admissible heuristic
estimates in the original task. Given a planning task Π with induced transition
system T , we denote abstraction mappings from concrete to abstract states pre-
serving initial state, goal states, and transitions, by α, and the induced abstract
transition system by T α. In defining the weight of an abstract transition in T α
between abstract states t and u with transition label a, we follow Geißer et
al. [4,5] and define it to be the minimal weight of all concrete transitions labeled
with action a that start in a state s with α(s) = t. Together with the fact that
every plan in the concrete transition system is a plan in the abstract transition
system, this ensures that the cost of each optimal abstract plan is an admissible
heuristic estimate. Abstractions where all abstract states are Cartesian products
of domain subsets of the state variables are called Cartesian abstractions. Since
we only consider Cartesian abstractions here, we simply call them abstractions
in the following.

3 State-dependent Cost Partitioning

Early work on additive admissible heuristics has mostly focused on techniques
that allow to generate or identify heuristics that can be added up admissibly
because each deals with a sub-problem of the planning task that can be regarded
independently from the rest [3,6]. An equivalent view on these techniques is
to regard them as cost partitionings [8] that distribute action costs such that
each operator is assigned its full cost in one heuristic and a cost of zero in all
other. However, cost partitionings are more general as costs can be distributed
arbitrarily between the heuristics as long as the sum over the individual costs
does not exceed the original cost. Given such a cost partitioning, heuristic values
are then computed on a copy of the planning task where actions cost only the
fraction of the actual action cost that is assigned to the heuristic. In this paper,
we continue developing more accurate cost partitioning techniques by presenting
state-dependent cost partitionings, a generalization where context information
of applied actions is taken into account.

Definition 1 (State-dependent cost partitioning). Let Π be a planning
task. Then a general state-dependent cost partitioning for Π is a tuple P =
〈c1 . . . , cn〉, where ci : A × S → R for 1 ≤ i ≤ n and

∑n
i=1 ci(a, s) ≤ c(a) for

all s ∈ S and a ∈ A. If P is state-independent, i.e., if ci(a, s) = ci(a, s
′) for

all s, s′ ∈ S, a ∈ A and 1 ≤ i ≤ n, then P is a general state-independent cost
partitioning for Π.

Let h1, . . . , hn be admissible heuristics and P = 〈c1 . . . , cn〉 a cost partition-
ing. Then the corresponding cost partitioning heuristic is denoted as hP (s) =∑n
i=1 hi(s, ci), where the sum is defined as ∞ if any term in the sum is ∞,

even if another term is −∞. We want to point out that the introduction of
state-dependent cost functions does not break admissibility of hP .

State-dependent cost partitionings differ from their state-independent coun-
terpart in that each state-action pair can have its own cost instead of a cost that
is shared among all possible applications of an action.



Definition 2 (OCPD and OCPI). Let h1, . . . , hn be admissible heuristics for
a planning task Π, PD the space of state-dependent cost partitionings and PI ⊆
PD the space of state-independent cost partitionings for Π. The optimal state-
dependent cost partitioning (OCPD) heuristic estimate for h1, . . . , hn in state
s is hocpD(s) = maxP∈PD

hP (s), and the optimal state-independent cost parti-
tioning (OCPI) heuristic estimate for h1, . . . , hn is hocpI(s) = maxP∈PI

hP (s).

State-dependent cost partitionings allow the computation of more accurate
heuristics estimates.

Theorem 1 (OCPD dominates OCPI). Let h1, . . . , hn be admissible heuris-
tics for a planning task Π. Then hocpD(s) ≥ hocpI(s) for all s ∈ S. Moreover,
there are planning tasks where the inequality is strict for at least one state. ut

Although Theorem 1 provides an encouraging result, its practical impact
appears limited. This is mostly because the computation of an optimal state-
dependent cost partitioning with a method designed for state-independent cost
partitionings [8,12] would require a compilation with one action for each state-
action pair, a number that is exponential in the number of state variables.
Whereas there are techniques like context splitting [13] that allow to compute a
more compact compilation, the worst-case exponential blowup cannot be avoided
in general. We therefore turn our attention to saturated cost partitioning [15], a
technique that is tractable in practice.

4 Saturated Cost Partitioning

Seipp and Helmert [15] introduced the concept of cost saturation. Iteratively, they
compute an abstraction, reduce the action costs such that all goal distances are
preserved, and use the remaining costs for subsequent abstractions. The result is
known as a saturated cost partitioning. Due to the greediness of the procedure,
the resulting cost partitioning usually provides poorer estimates than the opti-
mal cost partitioning. However, we can compute the saturated cost partitioning
much faster and more memory-efficiently. Following Seipp and Helmert [15] and
extending their definition to potentially negative, but still state-independent ac-
tion cost, we can define saturated state-independent cost partitioning as follows.

Definition 3 (SCPI). Let Π be a planning task with cost function c and α1, . . . ,
αn abstractions. Let 〈c1, . . . , cn〉 and P = 〈ĉ1, . . . , ĉn〉 be tuples of cost functions
with the following properties: c1 = c; ĉi(a) = maxs∈S hi(αi(s)) − hi(αi(s[a])),
where hi is the goal distance function of T αi with cost function ci; and ci+1 =
ci − ĉi. We call ci the remaining cost for T αi , ĉi the saturated cost of T αi and
P the saturated state-independent cost partitioning (SCPI) for α1, . . . , αn.

We denote the associated heuristic by hscpI . Seipp and Helmert [15] show that
the saturated cost function preserves the goal distances of all abstract states in
all abstractions, and is minimal among all distance-preserving cost functions.
The same holds for the potentially negative cost partitioning that we use.



As state-independent cost functions do not allow that costs are assigned to
actions in the context of the current state, saturated cost functions are computed
by maximizing over all weights of transitions that are labeled with the same
action. State-dependent cost partitioning offers an opportunity to overcome this
weakness by allowing to reduce the costs of state-action pairs rather than actions.

Definition 4 (SCPD). Let Π be a planning task with cost function c and let
α1, . . . , αn be abstractions. Let 〈c1, . . . , cn〉 and P = 〈ĉ1, . . . , ĉn〉 be tuples of cost
functions with the following properties: c1(a, s) = c(a) for all a ∈ A and s ∈ S;
ĉi(a, s) = hi(α(s)) − hi(α(s[a])), where hi is the goal distance function of T αi

with cost function ci; and ci+1 = ci− ĉi. We call ci the remaining cost for T αi , ĉi
the saturated cost of T αi and P the saturated state-dependent cost partitioning
(SCPD) for α1, . . . , αn.

We denote the associated heuristic by hscpD . In analogy to Theorem 1, we
might be tempted to expect a similar theoretical dominance of SCPD over SCPI.
However, it turns out that this is not the case due to the inaccuracy caused by
the greediness of saturated cost partitionings.

Theorem 2 (SCPD and SCPI are incomparable). There are planning tasks
Π and Π ′ with states s ∈ S and s′ ∈ S′ such that hscpD(s) > hscpI(s) and
hscpI(s′) > hscpD(s′). ut

In Theorems 1 and 2, we investigated the relationship between OCPD and
OCPI, and between SCPD and SCPI. Dominance of OCPD over SCPD and of
OCPI over SCPI is clear. What is left is comparing SCPD to OCPI.

Theorem 3 (SCPD and OCPI are incomparable). There are a planning
tasks Π and Π ′ with states s ∈ S and s′ ∈ S′ such that hscpD(s) > hocpI(s) and
hocpI(s′) > hscpD(s′). ut

OCPD

SCPD OCPI

SCPI

(clear)

≺
(Thm. 1)�

(clear)
≺

(Thm. 3)

incomparable

(Thm. 2)
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The figure to the left shows a summary of
our theoretical results (where A � B means
A dominates B). Optimal state-dependent
cost partitioning combines the best of both
worlds, but computing it is exponential.
Saturated state-dependent cost partitioning
may not always result in better heuristic es-
timates, but it has the potential to surpass
optimal state-independent cost partitioning.

5 Conclusion

We generalized cost partitionings and showed that additional information can
be extracted from a set of abstractions if context information of applied actions
is taken into account. We showed that an optimal state-dependent cost parti-
tioning dominates all state-independent cost partitionings and that there are



planning tasks where the dominance is strict. As it is unclear how an optimal
state-dependent cost partitioning can be computed efficiently in practice, we
applied the idea to the efficiently computable saturated cost partitioning. We
showed that saturated state-dependent cost partitioning does not dominate its
state-independent sibling, but may still surpass optimal state-independent cost
partitioning. Preliminary experimental results are generally in line with what
our theoretical results suggest.
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