
On the Relationship Between State-Dependent Action Costs and Conditional
Effects in Planning

Robert Mattmüller and Florian Geißer
University of Freiburg, Germany

{mattmuel, geisserf}@informatik.uni-freiburg.de

Benedict Wright and Bernhard Nebel
BrainLinks-BrainTools, University of Freiburg, Germany

{bwright, nebel}@informatik.uni-freiburg.de

Abstract

When planning for tasks that feature both state-dependent
action costs and conditional effects using relaxation heuris-
tics, the following problem appears: handling costs and ef-
fects separately leads to worse-than-necessary heuristic val-
ues, since we may get the more useful effect at the lower cost
by choosing different values of a relaxed variable when de-
termining relaxed costs and relaxed active effects.
In this paper, we show how this issue can be avoided by
representing state-dependent costs and conditional effects
uniformly, both as edge-valued multi-valued decision dia-
grams (EVMDDs) over different sets of edge values, and
then working with their product diagram. We develop a the-
ory of EVMDDs that is general enough to encompass state-
dependent action costs, conditional effects, and even their
combination.
We define relaxed effect semantics in the presence of state-
dependent action costs and conditional effects, and describe
how this semantics can be efficiently computed using prod-
uct EVMDDs. This will form the foundation for informative
relaxation heuristics in the setting with state-dependent costs
and conditional effects combined.

Introduction
Both from the modeling and from the computational per-
spective, it makes sense to allow planning tasks with state-
dependent action costs, which can be more natural, elegant,
compact, and structured than tasks with state-independent
costs only. Recent work (Geißer, Keller, and Mattmüller
2015; 2016) has shown that state-dependent action costs
(SDAC) can be handled efficiently by representing cost
functions as edge-valued multi-valued decision diagrams
(EVMDDs) (Ciardo and Siminiceanu 2002; Lai, Pedram,
and Vrudhula 1996). Such decision diagrams exhibit ad-
ditive structure in the cost functions. This structure can
then be exploited in various ways, such as in compilations
of SDAC to constant-cost tasks, or within the relaxed plan-
ning graph (RPG) when computing relaxation heuristics, or
to efficiently obtain abstraction heuristics (Geißer, Keller,
and Mattmüller 2015; 2016).

However, it turns out that one needs to be very careful
when dealing with SDAC and conditional effects (CE) si-
multaneously, in particular in a delete-relaxed setting and if
there is an action whose cost and effect share dependencies

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5

S G

Figure 1: Corridor example. Initial position left, goal posi-
tion right. The darker the grid cell, the more costly a move-
ment out of this cell.

on common variables. If this is the case, and if SDAC and
CE are handled separately, one may obtain a useful but ex-
pensive effect at an unrealistically low cost by choosing dif-
ferent values of a relaxed variable when determining relaxed
costs and relaxed active effects. This can lead to unnecessar-
ily low and thus uninformative heuristic values, which hurts
the search that uses this heuristic. Let us illustrate the prob-
lem with a concrete example (see Fig. 1). Assume that there
is a corridor of length 6 in which we can only move one cell
to the left or to the right in each step. The position in the
corridor is denoted by the state variable x with possible val-
ues 0, . . . , 5. Initially, x = 0, and in the goal, x = 5. The
move-right action is always applicable, and it has the condi-
tional effect x′ := x+ 11, which we read as an abbreviation
for (x = 0 B x′ := 1) ∧ · · · ∧ (x = 4 B x′ := 5). More-
over, the further to the right one gets, the more costly the
movements become, which is reflected by the cost function
cost(move-right) = x+ 1. The move-left action works simi-
larly, with the same cost function as move-right. An optimal
unrelaxed plan is to move to the right five times in a row, at
an overall cost of 1 + 2 + 3 + 4 + 5 = 15.

Assume that we want to obtain a relaxation heuristic value
for the initial state s0, say h+(s0), and assume that we ig-
nore the interaction of SDAC and CE in the relaxation. This
means that in a relaxed state s+ with s+(x) ⊆ {0, . . . , 5},
where x takes several values simultaneously, the cost of
move-right is the minimal cost the action has for any value of
x in s+, and that the effect is the union of the effects it has for
any value of x in s+. For example, for s+(x) = {0, 1, 2},
we get cost(move-right)(s+) = 1 from 0 ∈ s+(x), but
the next relaxed state will still include the value 3, because
2 ∈ s+(x), meaning that we moved one cell to the right at

1Notice that we call the variable x after the update x′. For clar-
ity, we will follow this pattern of using primed copies of variables
to refer to their value after an update throughout the paper.

cost 1, although it should have cost us 3. This can lead to
severe underestimations of the actual goal distances. E. g.,
we get h+(s0) = 5 instead of h∗(s0) = 15. Even worse,
instead of decreasing when moving closer to the goal, the
heuristic values first increase. For instance, if s1 is the state
with x = 1, then h+(s1) = 6 > 5 = h+(s0), although
we are closer to the goal. The reason is that we first have to
pay two units for moving to the left, just to get an excuse for
assuming unit cost values of the subsequent four actions of
moving to the right from the initial position x = 1. This ex-
ample can be generalized to show that the resulting heuristic
values can become arbitrarily inaccurate.

Fortunately, there is a way out of this problem. We must
not handle SDAC and CE separately by minimizing over the
costs and taking unions of effects separately, but rather take
the interaction between them into account. In the example,
this means that we still have to take the union over all pos-
sible effects in s+, but that we have to assign different costs
to different effects. Then, in state s+ from above, we still
get the effects x′ := 1, x′ := 2, and x′ := 3, but at sep-
arate costs of 1, 2, and 3, respectively, which leads to the
perfect heuristic value h+(s0) = 15. The question is how
to connect SDAC and CE in the right way. The key ob-
servation behind our proposed solution is that SDAC and
CE are very closely related, as they can both be thought of
as functions from states to elements of certain monoids: to
cost values from N = (N,+, 0) for SDAC2, and to sets
of active effects from F = (2F ,∪, ∅) for CE, where F
is the set of facts of the planning task. Having monoid
structures with addition and union, respectively, allows us
to assign partial costs that are already unavoidable and par-
tial effects that are already guaranteed to happen to partial
variable assignments, and to incrementally derive total costs
(via addition) and total effects (via set union) by system-
atically evaluating the current state fact by fact. This ob-
servation, together with the observation that EVMDDs al-
ready proved useful for state-dependent costs, suggests rep-
resenting conditional effects as EVMDDs over F , just as
state-dependent costs can be represented as EVMDDs over
N , and then combining these representations, provided that
both use the same variable ordering. The reader who is curi-
ous about what those diagrams look like for the motivating
example may already have a quick glance at Figs. 2, 3, and 4,
which we will discuss in more detail below. The prod-
uct diagram in Fig. 4 solves our problem with the run-
ning example. Recall the relaxed state s+ with s+(x) =
{0, 1, 2}. Before, we had cost(move-right)(s+) = 1 for all
effects that move-right produced in s+, i. e., for x′ := 1,
x′ := 2, and for x′ := 3 alike. Now, cost(move-right)(s+)
is no longer a single value, but rather it associates dif-
ferent costs to different effects, specifically cost i to ef-
fect x′ := i for i = 1, 2, 3, i. e., cost 3 to x′ := 3.
The combined decision diagrams for SDAC and CE can

2We use N instead of Z or even Q, because having a well-
founded set with a minimal element makes some later discussions a
bit easier, and it is hardly a restriction of generality, since we often
assume nonnegative action costs anyway, and fractional costs can
still be approximated.

then be used similarly as EVMDDs for SDAC alone are
used in various ways (Geißer, Keller, and Mattmüller 2015;
2016). The rest of the paper is concerned with how to for-
malize this idea and how to generalize it to arbitrary SDAC
and CE.

Preliminaries
Planning with State-Dependent Action Costs and
Conditional Effects
We consider planning tasks with SDAC and CE, and base
our work on the formalism of Geißer et al. (2015).

A planning task with SDAC and CE is a tuple Π =
(V, A, s0, s?, (ca)a∈A) consisting of the following compo-
nents: V = {v1, . . . , vn} is a finite set of state variables,
each with an associated finite domain Dv = {0, . . . , |Dv| −
1}. A fact is a pair (v, d), where v ∈ V and d ∈ Dv . We
often refer to single facts as f and the set of all facts as F .
A partial variable assignment s over V is a consistent set
of facts. If s assigns a value to each v ∈ V , s is called a
state. Let S denote the set of states of Π. A is a set of ac-
tions. An action is a pair a = 〈p, e〉, where p is a partial
variable assignment called the precondition, and e is a con-
ditional effect. We assume, without loss of generality, that
conditional effects are given in effect normal form (ENF),
which is a special case of Rintanen’s unary conditionality
(UC) normal form (Rintanen 2003). An effect in ENF is a
conjunction e =

∧
i=1,...,k ei of sub-effects ei of the form

ϕi B (w′ := d′), where ϕi is a propositional formula over
F , and where w′ := d′ is an atomic effect (a primed fact)
with a variable w ∈ V and value d′ ∈ Dw. In ENF, every
atomic effect may occur at most once in e. We furthermore
assume that there is no state s in which two contradicting
atomic effects are enabled, i. e., whenever e includes two
conjuncts ϕiB (w′ := d′) and ϕj B (w′ := d′′) for d′ 6= d′′,
then ϕi ∧ ϕj is unsatisfiable. If some ϕi = >, then the cor-
responding sub-effect is unconditional. The state s0 ∈ S is
called the initial state, and the partial state s? specifies the
goal condition. Each action a ∈ A has an associated cost
function ca : S → N that assigns the application cost of a to
all states where a is applicable.

Each cost function ca depends on a certain subset of the
state variables. Throughout the paper, we assume without
loss of generality that for all variables v that are mentioned
in the precondition p of an action a, neither ca nor any effect
condition ϕi of its effect depends on v. Otherwise, one could
substitute the precondition value of v in the cost function or
the effect condition, respectively, and simplify. The seman-
tics of planning tasks are as usual: an action a is applicable
in state s iff p ⊆ s. To define the result of an action applica-
tion, we need the change set of e in s (Rintanen 2003).
Definition 1. Let s ∈ S be a state and e an effect in ENF
over the state variables of s. Then the change set of e in s,
symbolically [e]s, is defined as follows:
(1) [e1 ∧ · · · ∧ en]s = [e1]s ∪ · · · ∪ [en]s.
(2) [ϕB f]s = {f} if s |= ϕ, and [ϕB f]s = ∅, otherwise.

A change set will never contain two contradicting effects
w′ := d′ and w′ := d′′ for d′ 6= d′′ because we as-

sume that contradicting effects have inconsistent conditions.
Therefore, removing primes from primed variables, we can
view change sets as partial variable assignments. Then, ap-
plying an applicable action a to s yields the state s′ with
s′(v) = [e]s(v) where [e]s(v) is defined, and s′(v) = s(v)
otherwise. We write s[a] for s′.

A state s is a goal state iff s? ⊆ s. Let π = 〈a0, . . . , an−1〉
be a sequence of actions from A. We call π applicable in s0
if there exist states s1, . . . , sn such that ai is applicable in si
and si+1 = si[ai] for all i = 0, . . . , n− 1. We call π a plan
for Π if it is applicable in s0 and if sn is a goal state. The
cost of plan π is the sum of action costs along the induced
state sequence, i.e., cost(π) =

∑n−1
i=0 cai

(si).

Edge-Valued Decision Diagrams
Both action cost functions and conditional effects can be
represented as EVMDDs, though over different monoids.
Recall that a monoid is a structure G = (G,+, 0) consist-
ing of a carrier set G, a binary operation + on G, and an
element 0 ∈ G such that + is associative, and that 0 is the
neutral element. Throughout the paper, we will also assume
that the monoids we are concerned with are commutative.

Definition 2. Let G = (G,+, 0) be a commutative monoid.
An EVMDD over G and over V is a tuple E = 〈κ, f〉,
where κ ∈ G and f is a directed acyclic graph consist-
ing of two types of nodes: (i) there is a single terminal
node denoted by 0. (ii) A nonterminal node v is a tuple
(v, χ0, . . . , χk, w0, . . . , wk) where v ∈ V is a variable,
k = |Dv| − 1, children χ0, . . . , χk are terminal or non-
terminal nodes of E , and w0, . . . , wk ∈ G.

By f we also refer to the root node of E . Edges of E be-
tween parent and child nodes are implicit in the definition
of the nonterminal nodes of E . The label of an edge from v
to child χi is wi. An EVMDD over a commutative monoid
G with carrier G and variables V denotes a function from
the set of states S over V to G. Intuitively, to determine the
function value for a given state s ∈ S, one has to follow the
unique path in the EVMDD determined by s by always fol-
lowing the unique edges consistent with s, collect the edge
labels along the way, and combine them with +. E. g., if the
edge labels are numbers and + is addition, then one has to
add up all the encountered edge labels.

Definition 3. An EVMDD E = 〈κ, f〉 over G = (G,+, 0)
and V denotes the function κ + f from the states over
V to G, where f is the function denoted by f . The
terminal node 0 denotes the constant function 0, and
(v, χ0, . . . , χk, w0, . . . , wk) denotes the function given by
f(s) = ws(v) +fs(v)(s), where fs(v) is the function denoted
by child χs(v). We write E(s) for κ+ f(s).

In the graphical representation of an EVMDD E = 〈κ, f〉,
f is represented by a rooted DAG and κ by a dangling in-
coming edge to the root node of f . The terminal node is
depicted by a rectangular node labeled 0. Edge constraints
d are written next to the edges, edge labels wd in boxes on
the edges.

Let us return to our example. The action cost function
cost(move-right) = x+1 can be represented by the EVMDD

x

0

1

0

0

1

1

2

2

3

3

4

4

5

5

Figure 2: EVMDD over N for cost function x+ 1.

x

0

∅

{x′ := 1}

0

{x′ := 2}

1
{x′ := 3}

2

{x′ := 4}
3

{x′ := 5}

4

∅

5

Figure 3: EVMDD overF for conditional effect x′ := x+1.

over N depicted in Fig. 2. Similarly, the conditional effect
x′ := x+1 of move-right can be represented by the EVMDD
over F depicted in Fig. 3. Notice that in the latter, the edge
labels are generally sets of effects that fire, not just single
effects. They only happen to be singleton sets in this exam-
ple for x = 0, . . . , 4. For x = 5, when the right end of the
corridor has been reached, the conditional effect is empty,
as witnessed by the corresponding edge label ∅. Similarly,
the empty set at the dangling incoming edge represents the
fact that there are no unconditional effects in this example.
Otherwise, they would be found there. The product of those
two EVMDDs, depicted in Fig. 4, is obtained by combining
decision nodes of (the quasi-reduced form of) one diagram
with nodes of (the quasi-reduced form of) the other diagram
on the same level, i. e., with the same associated decision
variable, with corresponding paths leading there, and com-
bining edges and edge labels accordingly. It is, by construc-
tion, an EVMDD over the direct product N ⊗ F of N and
F . In this example, there is only one decision node with as-
sociated decision variable x in both diagrams, and therefore
also just one product node.

To define when a (reduced ordered) EVMDD is canoni-
cal, we still need to ensure that edge labels are not arbitrar-
ily shifted up and down along the edges. This is achieved by
requiring that there is nothing that sibling edge labels origi-
nating in the same parent node v still have in common that
could not be taken care of earlier in the decision diagram.
For N = (N,+, 0), this means that the minimum edge
weight of any edge leaving v is zero (and hence, any ex-
cess weight has been pulled upward into the incoming edge
weight). Similarly, for F = (2F ,∪, ∅), it means that the
intersection of the labels of the edges leaving v is empty
(and hence, all partial effects that happen for all possible

x

0

1

∅

0

{x′ := 1}

0
1

{x′ := 2}

1
2

{x′ := 3}

2

3

{x′ := 4}

3

4

{x′ := 5}

4

5

∅

5

Figure 4: EVMDD over N ⊗F for cost function x+ 1 and
conditional effect x′ := x + 1 combined. Edge labels have
their N -part on top, and their F-part at the bottom.

values of the current decision variable v are pulled upward
into the incoming edge label). In general, it means that the
EVMDDs have to respect a lattice order on their underlying
monoid. A meet-semilattice is a partially ordered set (G,≤)
which has a greatest lower bound for any nonempty finite
subset G′ ⊆ G, denoted by

∧
G′. A monoid G = (G,+, 0)

is called meet-semilattice ordered if it comes with a partial
order≤ onG such that (G,≤) is a meet-semilattice, that the
operation + on G can be distributed over the greatest lower
bound operator ∧, and that

∧
G = 0. We will usually as-

sume a meet-semilattice ordering implicitly without always
mentioning it. It is easy to verify that both N with the nat-
ural order ≤ and the minimum operation min as greatest
lower bound, and F with the subset relationship ⊆ and the
intersection operation ∩ as greatest lower bound are com-
mutative meet-semilattice-ordered monoids.

With this, we can phrase the standard ex-
tra canonicity requirement for EVMDDs. Let
v = (v, χ0, . . . , χk, w0, . . . , wk) be a nonterminal node
of an EVMDD over a meet-semilattice-ordered monoid
G = (G,+, 0) with order ≤ and greatest lower bound

∧
.

Then we require that
∧

i=0,...,k wi = 0. In the following, we
assume that all EVMDDs we deal with are canonical.

EVMDD Construction
In this section, we will discuss how EVMDDs over N ⊗ F
can be constructed that encode SDAC and CE for unrelaxed
states in one diagram. In the subsequent section, we will
show how the same diagrams can also be used to determine
SDAC and CE for relaxed states.

Construction for State-Dependent Action Costs
The top-down EVMDD construction we sketch below is
standard and known from the literature (Lai, Pedram, and
Vrudhula 1996). It is basically the construction using re-
peated Shannon expansions into cofactors also known from
BDDs (Bryant 1986), just with the additional requirement
that the edge labels have to be set in the right way. In-
stead of describing the construction for arbitrary EVMDDs,
we discuss it for EVMDDs over N , and then explain how

this generalizes to other monoids, in particular to F . Let
c : S → N be the function we want to represent. For sim-
plicity, let us also assume that c is a multivariate polyno-
mial over the state variables given in canonical form as a
linear combination of monomials, and that we re-establish
this canonical form after each Shannon expansion. This al-
lows us to easily identify whether two cofactors should be
represented by the same decision node, which is the case iff
the polynomials only differ in their constant subterm. Let [c]
be the equivalence class of all polynomials that differ from
c only by an additive constant. We represent this class by
c with the constant additive subterm set to zero, which we
call c̃. Nodes in the decision diagram will represent such
equivalence classes. Let v1, . . . , vn be the variable ordering.
Then the EVMDD construction (ignoring possible Shannon
reductions performed on the fly) given a polynomial c pro-
ceeds variable layer by variable layer. On each layer, we
need decision nodes to represent a set of polynomials. For
layers i > 1, this set will be determined by the previous
layer(s). For layer i = 1, it is the singleton set {c}.

On layer 1 ≤ i ≤ n, let N = {c1, . . . , cn} be the set of
functions to be represented. First, we partitionN into equiv-
alence classes {c̃1, . . . , c̃n}. For each ci, let offset i = ci−c̃i
be the additive constant that got dropped when representing
ci as c̃i. For each representative c̃, we construct a decision
node v(c̃) associated with the current variable v = vi in the
variable ordering. In order to obtain sub-EVMDDs for all
outgoing (v, d)-branches at all nodes, at each node v(c̃), we
consider all cofactors c̃|v=d of c̃ for d ∈ Dv , where c̃|v=d

is obtained from c̃ by substituting value d for variable v and
simplifying. Call those cofactors c̃0, . . . , c̃k. On the next
layer i + 1, we will have to construct sub-EVMDDs for the
functions in the set

⋃
c∈N{c̃0, . . . , c̃k}, i. e., for all functions

from the previous layer with possible values of the variable v
plugged in. That recursive construction will return, for each
cofactor c̃i, i = 0, . . . , k, of each function c ∈ N , a dan-
gling edge with some weight wi pointing to some successor
node χi. Now, for each node v(c̃), we make the outgoing
edges point to successors χi, i = 0, . . . , k. Each corre-
sponding successor weight wi gets replaced with wi − w,
where w = mini=0,...,k wi, to ensure that the minimal suc-
cessor weight is zero. Finally, we have to pull excess weight
upward. To do that, for each function ci ∈ N , we return
a new dangling edge pointing to node v(c̃i) and carrying
weight w + offset i, i. e., the minimal weight w we had to
pull upward from the children plus the weight representing
the error we introduced by replacing ci with its representa-
tive c̃i. On the terminal layer n + 1, after all variables have
been branched on, necessarily c = κ is a constant. There-
fore, we return the EVMDD whose dangling incoming edge
immediately leads to the terminal node and carries label κ.

Notice that in this construction, we perform isomorphism
reductions along the way. For Shannon reductions, all we
have to do is skip branching on variables on which the cur-
rent cofactor does not depend any more, or, equivalently,
skip a decision node if all its children carry the same weight
and lead to the same successor node.
Example 1. To illustrate the construction, in Fig. 5 we de-
pict an EVMDD over N with variable ordering x, y, z rep-

x + y + z + yz + 1

x x + y + z + yz

y y + z + yz

z z z 2z

0 0

1

0

0

1

1

0

0

1

1

0

0 1

1

0

0

2

1

Figure 5: EVMDD for x+ y + z + yz + 1.

resenting the function c(x, y, z) = x+y+z+yz+1, where
the domains of all variables are binary. Importantly, the red
annotations at all decision nodes (and in the beginning) are
the respective cofactor representatives of the nodes. Follow-
ing the unique path through the EVMDD corresponding to
a given state s, say a state with s(x) = s(y) = s(z) = 1,
and summing up the edge weights along the way, results in
the correct function value, in this case c(x, y, z) = 5.

Proposition 1. Let c : S → N be an arithmetic function
and let Ec be the reduced ordered EVMDD for c constructed
as described above, for an arbitrary variable ordering. Let
s ∈ S be a state. Then c(s) = Ec(s).

The construction works for any type of functions over
states and corresponding sets of edge labels as long as we
can (a) determine cofactors for given variable-value pairs
v = d, (b) determine the edge labels, and (c) determine
whether two decision nodes represent the same function.
All this is simple for multivariate polynomials as above.
Generally, every arithmetic function from states to natural
numbers can be represented as a reduced EVMDD, even
uniquely for a fixed variable ordering.

Construction for Conditional Effects
For CE, using the monoid F = (2F ,∪, ∅), the construction
works in the same manner. Let e = (ϕ1Be1)∧· · ·∧(ϕnBen)
be an effect in ENF, and let v = d be a fact. Then the co-
factor e|v=d of e with respect to v = d is e with truth (>)
substituted for all occurrences of v = d and falsity (⊥) sub-
stituted for all occurrences of v = d′ for any d′ 6= d in any
effect condition ϕi, i = 1, . . . , n; and simplified. To ob-
tain the edge labels, a sub-effect w′ := d′ is moved into an
edge label as soon as it becomes unconditional, and gets re-
moved from the remaining cofactor. This is in analogy with
the construction for cost functions, since we can consider
two effects to be equivalent in the sense that they should be
represented by the same decision node iff they only differ
in their unconditional effects. Determining whether this is
the case amounts to a syntactic comparison of the remain-
ing cofactors, which is simple if the effects are in ENF and

(¬x B ¬v′) ∧ (x B u′) ∧

((x∨ y)B¬z′)∧ ((x∧ z)B v′)∧w′

x
(¬x B ¬v′) ∧ (x B u′) ∧

((x ∨ y) B ¬z′) ∧ ((x ∧ z) B v′)

y y B ¬z′

z z B v′

0 >

{w′}

{¬v′}
0

{u′,¬z′}

1

∅
0 {¬z′}

1

∅ 0

{v′}
1

Figure 6: EVMDD for (¬xB ¬v′) ∧ (xB u′) ∧ ((x ∨ y) B
¬z′) ∧ ((x ∧ z) B v′) ∧ w′.

all conditions ϕi are also appropriately normalized. In sum-
mary, this means that every conditional effect can be repre-
sented as an EVMDD over F .

Example 2. Consider the conditional effect in ENF e =
(¬xB¬v′)∧(xBu′)∧((x∨y)B¬z′)∧((x∧z)Bv′)∧w′.
We have binary domains for all variables and consequently
use the abbreviations ¬v and v for v = 0 and v = 1 (and
¬v′ and v′ for v′ := 0 and v′ := 1 in effects). The primed
variables in the edge labels (partial effects) help to distin-
guish them from their unprimed counterparts in the deci-
sion nodes (conditions). Fig. 6 depicts an EVMDD over F
with variable ordering x, y, z, u, v, w representing the effect
e. Again, the red annotations are the cofactor representa-
tives of the nodes. Following the unique path through the
EVMDD corresponding to a given state s, say a state with
s(x) = s(y) = s(z) = 1, and taking the union of the edge
labels along the way, results in the effect {w′, u′,¬z′, v′}.

For CE, the semantics of an effect applied to a state is its
change set [e]s. Therefore, the analogue to Prop. 1 for CE
reads as follows.

Proposition 2. Let e be a conditional effect in ENF, and
let Ee be the reduced ordered EVMDD for e constructed as
described above, for an arbitrary variable ordering. Let s ∈
S be a state. Then [e]s = Ee(s).

Proof sketch. The proof is by induction on the variable or-
dering v1, . . . , vn, showing that on each level i = 0, . . . , n
of Ee, the partial union E ie(s) of edge labels following state
s up to level i is the same as the partial change set [e]is up
to level i. The partial change set [e]is is defined with clause
(1) as in Def. 1, and with clause (2) replaced by clause (2′)
[ϕ B f]is = f if ϕ|v1=s(v1),...,vi=s(vi) is a tautology, and
[ϕBf]is = ∅, otherwise. Note that ϕ|v1=s(v1),...,vi=s(vi) is ϕ
with the values that s assigns to the first i variables plugged
in. This formula is a tautology iff it is already clear that the
effect ϕB f will fire after the first i variables in s have been
evaluated. We show inductively that for all i = 0, . . . , n,
we have [e]is = E ie(s). In the base case, both [e]0s and E0e (s)

x

y y

z z z z

0

1

{w′}

0

{¬v′}

0

1

{u′,¬z′}

1

0

∅

0

1

{¬z′}

1

0

∅

0

1

∅

1

0

∅

0
1

∅

1
0

∅

0 2

∅

1
0

∅

0

1

{v′}

1

0

∅

0

2

{v′}

1

Figure 7: EVMDD for x+ y+ z+ yz+ 1 and (¬xB¬v′)∧
(xB u′)∧ ((x∨ y)B¬z′)∧ ((x∧ z)B v′)∧w′ combined.

are the sets of unconditional effects of e; for [e]0s, because
nothing gets substituted in ϕ, and for E0e (s), since this is the
label of the dangling incoming edge of Ee. In the induc-
tive case, when going from [e]is to [e]i+1

s and from E ie(s) to
E i+1
e (s), in both cases exactly those facts are added that be-

come unconditional when also setting vi+1 to s(vi+1). In
conclusion, since [e]s = [e]ns and Ee(s) = Ene (s) (both obvi-
ous by definition), and [e]is = E ie(s) for all i = 0, . . . , n (by
the induction above), we also get [e]s = Ee(s).

Product EVMDDs
Before giving the general construction rule for product
EVMDDs, let us have a look at an example.

Example 3. Consider the two EVMDDs from Ex. 1 and 2.
Their product is depicted in Fig. 7. The diagram contains a
full binary tree over x, y, and z, which means that there is no
potential of exploiting shared structure due to the involved
combination of costs and conditional effects. This is, how-
ever, specific to this example. In general, product diagrams
can be much smaller.

The roadmap for our description of the product construc-
tion will be as follows: we will first express both the cost
EVMDD and the effect EVMDD as EVMDDs over the di-
rect product N ⊗ F . In the augmented cost EVMDD, each
edge carries its old weight together with the empty set of
effects, and similarly, in the augmented effect EVMDD,
each edge carries zero weight together with its old partial
effects. These two augmented EVMDDs can then be com-
bined into a product using the general apply procedure (Lai,
Pedram, and Vrudhula 1996) with the compound operator
(+,∪) that adds first components and takes unions of sec-
ond components. In other words, this application of (+,∪)

means that we independently add costs (actual costs coming
from one EVMDD, only zeroes coming from the other) and
take unions of effects (only empty effects coming from one
EVMDD, actual effects coming from the other).

Let us understand the apply procedure. For that, we as-
sume that a state space S and a variable ordering are fixed.
Let G = (G,+G, 0G) be a commutative monoid, and let
◦ be an operator on G, possibly different from +G. As-
sume further that g1 and g2 are two functions from S to G,
and that, by slight abuse of notation, we view ◦ also as an
operator on functions from S to G in the obvious way via
(g1 ◦ g2)(s) = g1(s) ◦ g2(s). Furthermore, let E(·) be the
construction that turns a function g : S → G into the re-
duced ordered EVMDD Eg representing it. We would like
to have an operator ◦E on EVMDDs over G (taking as input
and returning such EVMDDs) that mimics the behavior of ◦
on EVMDDs, i. e., such that E(g1◦g2) = Eg1 ◦E Eg2 . The ap-
ply procedure does exactly that. In the literature, the appli-
cation of ◦ on the EVMDD level, Eg1 ◦E Eg2 , is usually writ-
ten as apply(◦, Eg1 , Eg2). Algorithmically, the apply proce-
dure traverses both input EVMDDs Eg1 and Eg2 from top to
bottom in a synchronized manner, propagating edge labels
downward, recursively applying ◦ to pairs of correspond-
ing subgraphs with the same edge constraint, and pulling up
excess edge weights again when the recursive computation
has terminated. In the base case, when both EVMDDs only
represent constant functions encoded in their bottom-most
edge labels w1 and w2, those get combined into the new
edge label w1 ◦ w2. If, due to one of the EVMDDs being
Shannon-reduced at some point where the other is not, the
decision variables on both sides do not match, then the Shan-
non reduction on one side has to be conceptually undone by
virtually introducing a new decision node with all outgoing
edges carrying the “empty” label 0G before proceeding.

Let H = (H,+H , 0H) be another commutative monoid,
and assume that we want to take the product of two
EVMDDs EG over G and EH over H. Let us call E ′G =
expr1,G⊗H(EG) and E ′H = expr2,G⊗H(EH) the results of ex-
pressing both EVMDDs over the direct product G ⊗H. The
operations expri,G⊗H take their input EVMDD and leave its
entire structure intact, but replace each edge label w, in-
cluding the dangling incoming edge label κ, with the pair
(w, 0H) for i = 1, or with the pair (0G, w) for i = 2, re-
spectively. To take the product of EG and EH, it now suffices
to express both over G ⊗H, and then to apply the operation
+G×H = (+G,+H) to them:

EG ⊗ EH := expr1,G⊗H(EG) +G×H expr2,G⊗H(EH).

The definition of product EVMDDs along with the ob-
servation that product EVMDDs can be constructed effec-
tively allows us, in the following, to assume that we always
have access to EVMDDs talking about SDAC and CE in one
common structure. Next, we want to argue that this product
construction does the right thing. For that, we show that by
evaluating the product EVMDD for a state s, we still get the
correct cost values and change sets back via projection.
Proposition 3. Assume a fixed variable ordering. Let c :
S → N be an arithmetic function and e be a conditional
effect in ENF. Let Ec and Ee be the EVMDDs for c and e

constructed as described. Let Ec,e = Ec ⊗ Ee, and let s ∈ S
be a state. Then Ec,e(s) = (Ec(s), Ee(s)) = (c(s), [e]s).

Proof sketch. The second part of the equation immediately
follows from Props. 1 and 2. For the first part, we assume
without loss of generality that all EVMDDs in this proof
are quasi-reduced, which means that every variable appears
on every path through the EVMDD. This can always be
achieved by undoing all Shannon reductions and inserting
tests for all variables such that all outgoing arcs of those un-
necessary decision nodes point to the same successor and
carry the neutral element as edge labels. This only leads to
a polynomial blowup and does not change the semantics.

Let s ∈ S be an arbitrary state over the common state vari-
ables. Let Ec, Ee, and Ec,e be as stated in the proposition, but
already quasi reduced. Let E ′c = expr1,N⊗F (Ec) and E ′e =
expr2,N⊗F (Ee). When we construct Ec,e = E ′c ⊗E ′e, the ap-
ply procedure recursively combines corresponding edge la-
bels. Let v be a decision node constructed during the apply
procedure, and let vc and ve be the original nodes in E ′c and
E ′e from which it was constructed. Let (w0

c , ∅), . . . , (wk
c , ∅)

and (0, w0
e), . . . , (0, wk

e) the outgoing edge weights of vc

and ve, respectively. By construction, they carry all neu-
tral elements as one component. Then the outgoing edge
labels of v will be (w0

c , w
0
e), . . . , (wk

c , w
k
e). No labels will

be permanently shifted up or down during the procedure,
since

∧
i=0,...,k(wi

c, w
i
e) = (

∧
i=0,...,k w

i
c,
∧

i=0,...,k w
i
e) =

(mini=0,...,k w
i
c,
⋂

i=0,...,k w
i
e) = (0, ∅). This holds, since

we assumed that the original EVMDDs were canonical. The
successor nodes of v for pairs of decision variable v and
value d will also be the respective pairs, i. e., if vc has chil-
dren χ0

c , . . . , χ
k
c , and ve has children χ0

e, . . . , χ
k
e , then v has

children (χ0
c , χ

0
e), . . . , (χk

c , χ
k
e).

This implies that, when computing Ec,e(s), we trace
a sequence of edge labels (w0

c , w
0
e), . . . , (wn

c , w
n
e), from

top to bottom such that the corresponding sequences we
trace when computing Ec(s) and Ee(s) are w0

c , . . . , w
n
c , and

w0
e , . . . , w

n
e , respectively. For Ec,e(s) we use the neutral ele-

ment (0, ∅) and component-wise addition (+,∪), so that we
arrive at Ec,e(s) = (

∑n
j=0 w

j
c ,
⋃n

j=0 w
j
e), which is the same

as (Ec(s), Ee(s)).

We could alternatively have constructed the product
EVMDD directly in the product space, taking the two types
of cofactors for cost terms and conditional effects side by
side in each step, fixing partial costs and partial effects in
edge labels independently as soon as they are guaranteed to
occur, and only identifying two nodes on the same level if
both their remaining cost terms and their remaining effects
are identical. Since this would also correctly encode costs
and effects, the resulting EVMDD would be identical to Ec,e.
We opted for the product construction for clarity.

The size of a product EVMDD EG⊗EH is always bounded
by the product of the sizes of the factors EG and EH. More-
over, there are two special cases where the product construc-
tion incurs no blowup whatsoever. First, if EG and EH share
an identical graph topology and only differ in their edge
labels (as in Figs. 2 and 3), i. e., their evaluation proceeds

“in lockstep”, then the product also shares the same topol-
ogy. This happens whenever there is a one-to-one corre-
spondence between sub-effects and partial costs associated
with them. Second, if the set of variables VG on which EG
depends is disjoint from the set of variables VH on which
EH depends, and if VG and VH are not interleaved in the
variable ordering, then EG ⊗ EH will essentially be EG and
EH sequentially “glued together” in one way or the other,
with the label of the disappearing second dangling incom-
ing edge moved to the first dangling incoming edge instead.
This is the case whenever there is no relation between costs
and effects at all.

Relaxed Semantics for SDAC and CE
In this section, we first declaratively define a relaxed seman-
tics in the presence of SDAC and CE, and then show how
this semantics can be efficiently computed using the previ-
ously constructed product EVMDDs over N ⊗ F . When-
ever we mention relaxed states, the reader should keep in
mind that the same discussion works for arbitrary Carte-
sian states (Ball, Podelski, and Rajamani 2001; Seipp and
Helmert 2013), of which relaxed states are merely a special
case, in particular also for states of a Cartesian abstraction.

Declarative Definition
A relaxed state s+ assigns to each variable v ∈ V a non-
empty subset s+(v) ⊆ Dv of its domain. A state s ∈ S is
consistent with s+, in symbols s |= s+, iff for all variables
v, s(v) ∈ s+(v). An action a = 〈p, e〉 is relaxed applicable
in s+ iff p(v) ∈ s+(v) for all v for which p is defined. Now,
generalizing Def. 1, we define the change set of an effect
e of an action a with precondition p in a relaxed state s+.
However, instead of a set of facts, this will now be a set of
pairs of facts and associated cost values.
Definition 4. Let s+ be a relaxed state and a = 〈p, e〉 be
an action with effect e in ENF and cost function c : S →
N. Then the change set of e in s+ is defined as [e]cs+ =⊔

s∈S:s|=s+JeKcs, where

(1) Je1 ∧ · · · ∧ enKcs = Je1Kcs ∪ · · · ∪ JenKcs,
(2) JϕB fKcs = {(f, c(s))} if s |= ϕ, and

JϕB fKcs = ∅, otherwise, and
(3)

⊔
j Ej = {(f, n) ∈

⋃
j Ej | ∀(f, `) ∈

⋃
j Ej : ` ≥ n}.

The change set [e]cs+ consists of all those facts f that can
be achieved using e in any state s with s |= s+. With each
such fact f , the change set associates the minimal cost at
which f can be achieved among all s with s |= s+. When
defining [e]cs+ by referring to all states s with s |= s+,
we do not have to distinguish between states where a is
applicable and states where it is not. Since the precondi-
tion variables affect neither the costs nor the effect condi-
tions, whenever we get a minimal cost value from a state
where a is inapplicable, there must also be another state
also consistent with s+ where a is applicable and where
it costs the same. In clause (1), we still use the regular
union operation, which is justified since we assume that
no fact occurs on two different right-hand sides of sub-
effects. We might use the minimizing union

⊔
just as well,

leading to the equivalent phrasing [ϕ1 B f1 ∧ · · · ∧ ϕn B
fn]cs+ =

⊔
s∈S:s|=s+

⊔
i=1,...,nJϕi B fiKcs. For illustration,

recall the introductory example and the relaxed state s+ with
s+(x) = {0, 1, 2}. Let c = cost(move-right). Then we get
[x′ := x+ 1]cs+ = {(x′ := 1, 1), (x′ := 2, 2), (x′ := 3, 3)}.

EVMDD-Based Computation
Next, we show how we can compute change sets in relaxed
states efficiently. The problem is that in Def. 4, we take the
union over all unrelaxed states s with s |= s+, in the worst
case exponentially many in the number of state variables.
We would like to avoid this exponentiality whenever possi-
ble. This is where EVMDDs come into play. Below, we
will describe a polynomial evaluation procedure for product
EVMDDs Ec,e over costs and effects for relaxed states s+
as input that returns [e]cs+ . The main complication behind
the evaluation is that, in computing costs and effects for a
relaxed state s+, for costs we “minimize” (min) over all s
with s |= s+ to get the cheapest costs, whereas for effects,
we “maximize” (

⋃
) over all swith s |= s+ to get all possible

effects. This combination makes sense in a relaxed setting
to retain all behavior from the unrelaxed setting at no higher
costs. It also means, however, that we have to come up with
a custom evaluation procedure for EVMDDs over N ⊗ F
and relaxed states to reflect the described intuition.

Our proposed evaluation procedure traverses Ec,e, re-
stricted to edges consistent with s+, along a topological or-
dering from top to bottom. At each node v, it keeps track
of two pieces of information: (a) the set F of fact-cost pairs
(f, n) for all achieved facts f at v along any incoming path,
together with cheapest achievement costs n of f , and (b) the
cost n of a cheapest path leading to v. I. e., Ec,e(s+)(v)
will have the form (F, n). To formalize this procedure, let
v1, . . . ,vn be a topological ordering of Ec,e, where vn = 0.

Base case for i = 1: Node v1 only has the dangling in-
coming edge with label κ = (n, F ′). We let Ec,e(s+)(v) =
(F, n) with F = {(f, n) | f ∈ F ′} and n = n.

Inductive case for i > 1: Let v = vi be an interior
node of Ec,e. To determine F for v, we collect all facts Fold

inherited from parent nodes of incoming edges (consistent
with s+), with their costs increased by the incoming edge
cost. To those, we add all facts Fnew achieved on incom-
ing edges, with cost of achieving them there; the resulting
set of fact-cost pairs is filtered so that we only associate
the cheapest cost with each fact. Formally, let us denote
incoming edges of v as tuples consisting of a parent node
vj with associated decision variable vj and edge constraint
vj = dj , and edge label (nj , Fj), consisting of partial costs
nj and partial effects Fj . Index the incoming edges with
j = 1, . . . ,M . Let (Fj , nj) = Ec,e(s+)(vj) be the evalua-
tion result associated with parent node vj . Then we define
Fold
j = {(f, n+nj) | (f, n) ∈ Fj}, Fnew

j = {(f, nj+nj) | f ∈
Fj}, Fold =

⊔
j=1,...,M Fold

j , Fnew =
⊔

j=1,...,M Fnew
j , and

F = Fold t Fnew. Notice that for old facts, we still need to
take the respective edge costs into account, even after the
facts have already been achieved. To determine n for v, we
set n = minj=1,...,M (nj+nj). Then, Ec,e(s+)(vi) = (F, n).

Finally, we let Ec,e(s+) denote the first component of the

value Ec,e(s+)(0), discarding the reachability cost of 0, and
only keeping the reached facts with their associated costs.

Proposition 4. Let s+ be a relaxed state and a = 〈p, e〉 an
action with effect e in ENF and cost function c : S → N.
Let Ec,e = Ec ⊗ Ee be the product EVMDD of an EVMDD
Ec encoding c and an EVMDD Ee encoding e. Let the eval-
uation procedure of Ec,e for relaxed states be as described
above. Then [e]cs+ = Ec,e(s+).

Proof sketch. Both sides of the equality are by definition
functional sets of fact-cost pairs (f, n) where each fact f
occurs at most once. Functionality follows from the use of
the minimizing union operator t in both cases. We first ar-
gue that the sets of facts occurring in [e]cs+ and Ec,e(s+) are
identical. This is easy to see: by definition, a fact f occurs in
[e]cs+ iff there is an unrelaxed state s with s |= s+ such that
the effect condition for f is satisfied in s. This is the same
as saying that f ∈ [e]s for some such s. This is equivalent
to f ∈ Ee(s) for such an s according to Prop. 2, which, ac-
cording to the EVMDD product construction, is equivalent
to f appearing as part of some edge label in Ec,e for an edge
on a path corresponding to s. This, finally, is equivalent to f
occurring in Ec,e(s+), since during the evaluation procedure
of Ec,e, exactly the edges on paths corresponding to some s
with s |= s+ are traversed, and all visited effect edge labels
are collected along the way and no fact is ever discarded.

Now that we know that the same facts are mentioned in
[e]cs+ and Ec,e(s+), we still have to show that they are asso-
ciated with the same costs in both. In [e]cs+ , for fact f , by
definition this is the minimal cost at which f can be achieved
in any state s with s |= s+, i. e., mins∈S:s|=s+ and s|=ϕ c(s)
where ϕ is the effect condition of f . Let s be such a mini-
mizer. We have to show that f is associated with the same
cost in Ec,e(s+). We know that c(s) is the sum of edge
weights in the cost EVMDD Ec for the path corresponding
to s. By definition of the product construction, the same
weights (and therefore the same sum of weights) is also
present for s in the product EVMDD Ec,e. Moreover, in the
evaluation of Ec,e, that path will also be traversed. The point
at which f appears as an edge label may be anywhere on the
path, not just on the last edge before the terminal node. The
cost associated with f in Ec,e along that path is first deter-
mined after the edge where f appears as a label, and there it
is the cost of the prefix of the path corresponding to s ending
in the node after f has been set. It is clear by construction
that for the prefix, the sum of costs is the same as the partial
sum of costs in c(s). From there, when f gets propagated
further along the path suffix corresponding to s, the associ-
ated cost is always incremented accordingly, by adding nj
in the definition of Fold

j . Also, the cost coming from s never
disappears in a minimizing union operation, since s itself is
a minimizer. This shows that Ec,e(s+)(f) ≤ [e]cs+(f). For
the opposite direction, it suffices to note that if Ec,e(s+)(f)
were strictly smaller, then there would have to be a state s
responsible for this, which would also have to be taken into
account in [e]cs+(f), a contradiction.

Since we never associate more fact-cost pairs to a node
than there are facts, the evaluation procedure is clearly

polynomial in the size of the planning task and the prod-
uct EVMDD. To illustrate the evaluation, notice that the
EVMDD from Fig. 4 is such a product EVMDD. Evaluat-
ing it for relaxed state s+ with s+(x) = {0, 1, 2} means
removing all arcs with a constraint on x inconsistent with
s+, i. e., the arcs for x = 3, x = 4, and x = 5. Then, at the
decision node for x, we get the intermediate result (∅, 1).
At the terminal node, we get (∅ t {(x′ := 1, 1)} t {(x′ :=
2, 2)}t{(x′ := 3, 3)}, 1). Its first component is the same as
{(x′ := 1, 1), (x′ := 2, 2), (x′ := 3, 3)} = [x′ := x+ 1]cs+ .

Notice that, for a definition of optimal relaxed plans, we
will have to associate costs to facts in relaxed states as well,
and adapt Def. 4 accordingly. A complete analysis of h+
and its approximations in the SDAC/CE setting is beyond
the scope of this paper and left for future work.

Discussion
In the literature, SDAC and CE were only discussed sepa-
rately. In this paper, we demonstrated that they are, in fact,
just two sides of the same coin. This makes us conjecture
that, since EVMDDs seem to be an appropriate data struc-
ture to represent both, these decision diagrams might allow
us to handle all kinds of state-dependent aspects of actions
in a uniform way. We also have to point out, though, that
EVMDDs are not the magic bullet for dealing with condi-
tional effects. E. g., it is easy to see that an EVMDD-based
compilation of conditional effects can, in the worst case, be-
come exponentially larger than Nebel’s compilation (Nebel
2000). To see this, consider a conditional effect of the form
ϕ B w′ := d′, where ϕ is a propositional formula with an
exponentially large decision diagram representation. Then,
an EVMDD-based compilation will be exponential, whereas
Nebel’s compilation will be of constant size, since it only
branches on the entire formula ϕ once, whereas EVMDDs
may only branch on single variables in each step.

The attentive reader familiar with the successor gener-
ator (SG) in the Fast Downward planner (Helmert 2006)
will have noticed that EVMDDs over F are basically edge-
valued SGs (without don’t-care branches).

Finally, when combining the decision diagrams for SDAC
and CE, making them compatible not only means making
both edge-valued, but also making sure both use the same
variable ordering. Practically, this implies that such an or-
dering needs to be chosen carefully. In particular, one should
avoid interleaving variables that only occur in the cost func-
tion with variables that only occur in the effect conditions.

Conclusion
We defined a relaxed operator semantics in the presence
of SDAC and CE that is closer to the unrelaxed seman-
tics than an alternative naı̈ve semantics where costs and ef-
fects are handled separately. Whereas the new semantics
refers to exponentially many unrelaxed states, we proposed
an EVMDD-based way of computing it that avoids this ex-
ponentiality in many practical cases.

We intend to build upon this work to derive informative
relaxation heuristics, such as generalizations of the addi-
tive (Bonet, Loerincs, and Geffner 1997) or the FF (Hoff-

mann and Nebel 2001) heuristic. We believe that our
EVMDD encoding will also prove useful in the definition
of Cartesian abstraction heuristics, similarly as in previous
work (Geißer, Keller, and Mattmüller 2016).

Moreover, we will define and analyze action compilations
based on product EVMDDs. Similar to previous work on
SDAC (Geißer, Keller, and Mattmüller 2015), those compi-
lations will turn decision diagram edges into auxiliary ac-
tions with costs corresponding to the edge costs, and partial
effects corresponding to the edge’s effect label, additionally
keeping track of the current node in the diagram and of the
original preconditions and original effects, with a clean-up
action in the end that copies the content of primed variables
back to their unprimed counterparts. Finally, we will also
investigate admissible ways of keeping our EVMDDs small,
possibly at the cost of some precision.

Acknowledgements. This work was partly supported by
BrainLinks-BrainTools, Cluster of Excellence funded by the
German Research Foundation (DFG, grant number EXC
1086).

References
Ball, T.; Podelski, A.; and Rajamani, S. K. 2001. Boolean
and cartesian abstraction for model checking C programs. In
Proc. TACAS 2001, 268–283.
Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust and
fast action selection mechanism for planning. In Proc. AAAI
1997, 714–719.
Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Computers
35(8):677–691.
Ciardo, G., and Siminiceanu, R. 2002. Using edge-valued
decision diagrams for symbolic generation of shortest paths.
In Proc. FMCAD 2002, 256–273.
Geißer, F.; Keller, T.; and Mattmüller, R. 2015. Delete
relaxations for planning with state-dependent action costs.
In Proc. IJCAI 2015, 1573–1579.
Geißer, F.; Keller, T.; and Mattmüller, R. 2016. Abstrac-
tions for planning with state-dependent action costs. In Proc.
ICAPS 2016, 140–148.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR 14:253–
302.
Lai, Y.; Pedram, M.; and Vrudhula, S. B. K. 1996. Formal
verification using edge-valued binary decision diagrams.
IEEE Transactions on Computers 45(2):247–255.
Nebel, B. 2000. On the compilability and expressive power
of propositional planning formalisms. JAIR 12:271–315.
Rintanen, J. 2003. Expressive equivalence of formalisms for
planning with sensing. In Proc. ICAPS 2003, 185–194.
Seipp, J., and Helmert, M. 2013. Counterexample-guided
Cartesian abstraction refinement. In Proc. ICAPS 2013,
347–351.

