On the Relationship Between State-Dependent Action Costs and Conditional Effects in Planning

Robert Mattmüller Florian Geißer
Benedict Wright Bernhard Nebel

February 4, 2018
AAAI 2018, New Orleans, LA, USA
Relaxations with State-Dependent Costs and Effects
Relaxations with State-Dependent Costs and Effects

\[x = \{ 1, 2, 3 \}, \quad \text{cost}((x), x) = 1, \quad \text{eff}((x), x) = \{ 2, 3, 4 \}, \quad \text{inc}((x)) \]

\[x = \{ 1, 2, 3, 4, 5, 6 \}, \quad \text{cost}((x), x) = x, \quad \text{eff}((x), x) = \{ 2, 3, 4 \} \bigcup \]

Relaxations with State-Dependent Costs and Effects

\[\text{cost}(\emptyset, x) = x \]

\[\text{eff}(\emptyset, x) = \text{inc}(x) \]

\[x = 1, 2, 3, 4, 5, 6 \]
Relaxations with State-Dependent Costs and Effects

\[\text{cost}(\bullet, x) = x \]
\[\text{eff}(\bullet, x) = \text{inc}(x) \]
Relaxations with State-Dependent Costs and Effects

\[\text{cost}(\bullet, x) = x \]
\[\text{eff}(\bullet, x) = \text{inc}(x) \]

\[x^+ = \{1, 2, 3\} \]
Relaxations with State-Dependent Costs and Effects

\[\text{cost}(\bullet, x) = x \]
\[\text{eff}(\bullet, x) = \text{inc}(x) \]

\[x = 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \]

\[x^+ = \{1, 2, 3\} \quad \text{cost}(\bullet, x^+) = 1 \quad (\text{min}) \]
\[\text{eff}(\bullet, x^+) = \{2, 3, 4\} \quad (\text{U}) \]
Relaxations with State-Dependent Costs and Effects

\[\text{cost}(\bullet, x) = x \]
\[\text{eff}(\bullet, x) = \text{inc}(x) \]

\[x^+ = \{1, 2, 3\} \]
\[\text{cost}(\bullet, x^+) = 1 \quad \text{(min)} \]
\[\text{eff}(\bullet, x^+) = \{2, 3, 4\} \quad \text{(\cup)} \]
Relaxations with State-Dependent Costs and Effects

What happened?
- Cost-effect mismatch!
- Uninformative heuristic $h^+(x_1) = 5$ vs. $h^*(x_1) = 15$

What to do about it?
- Handle costs and effects in combination!
- How?
 - ✗ in tabular form? Exponential blow-up.
 - ✔ as decision diagram? Often compact.

\leadsto edge-valued multi-valued decision diagrams (EVMDDs)
[Ciardo and Siminiceanu 2002; Lai, Pedram, and Vrudhula 1996]
Combined Representation using EVMDDs

Combined EVMDD for costs and effects

Consequence: effect $x' := 4$ now associated with cost 3.
EVMDD Construction
How to construct those EVMDDs?

Possible approach:

- Repeated application of apply procedure
 [Ciardo and Siminiceanu 2002; Lai, Pedram, and Vrudhula 1996]

Prerequisite:

✅ Generalize apply procedure beyond numbers.

Recursive construction:

- Build ASTs of normalized cost and effects, and their combination.
- Recursively run apply procedure on this AST.
EVMDD Construction

Example: cost $x + 2y + 1$ combined with effect $((x \lor y) \triangleright \neg z') \land \ldots$
EVMDD Construction

Example: cost $x + 2y + 1$ combined with effect $((x \lor y) \triangleright \neg z') \land \ldots$
EVMDD Construction

Example: cost $x + 2y + 1$ combined with effect $((x \lor y) \triangleright \neg z') \land \ldots$
EVMDD Construction

Example: cost $x + 2y + 1$ combined with effect $((x \lor y) \triangleright \neg z') \land \ldots$
EVMDD Construction

Example: cost
EVMDD Construction

Example: cost $x + 2y + 1$ combined with effect $((x \lor y) \triangleright \neg z') \land \ldots$
EVMDD Construction

Example: effects
EVMDD Construction

Example: cost $x + 2y + 1$ combined with effect $((x \lor y) \triangleright \neg z') \land \ldots$
EVMDD Construction

Example: cost and effect combined
Properties of the Construction

Proposition

If EVMDD E_i represents function f_i ($i = 1, 2$), then EVMDD $\text{apply}(\circ, E_1, E_2)$ represents $f(s) = f_1(s) \circ f_2(s)$.

E. g., $\circ = +, -, \lor, \land, \triangleright, \text{make_pair}, \ldots$
Properties of the Construction

Corollary
Combined cost-effect EVMDD represents function f with

$$f(s) = (\text{cost in } s, \text{ active effects in } s).$$
Properties of the Construction

Size of combined cost-effect EVMDD:

- **worst case**: product of factor sizes
- **best cases**: \(\frac{\max}{\sum} \) of factor sizes if
 - factors have identical structure:
 - or factors depend on disjoint variable sets:
Uses of Cost-Effect EVMDDs

- Efficient computation of relaxed semantics
- Heuristics based on that: $h^+(x_1) = 15$
- Compiling away state-dependent costs and effects
Empirical Results

Preliminary. Cost-based navigation domain.

Heuristic values: costs and effects *combined* vs. *separately*

Representation size of combination: (small instances, on avg)

- EVMDD-based: 58 nodes
- tabular: 1381 entries
Summary

- Informative heuristics wanted
 - combined treatment of state-dependent costs and effects
- Representation: cost and effect EVMDDs
- Construction: repeated apply