On the Relationship Between State-Dependent Action Costs and Conditional Effects in Planning

UNI FREIBURG

Robert MattmüllerFlorian GeißerBenedict WrightBernhard Nebel

February 4, 2018

AAAI 2018, New Orleans, LA, USA

2/18

$$x^+ = \{1, 2, 3\}$$

2/18

iRURG

What happened?

- Cost-effect mismatch!
- \rightsquigarrow Uninformative heuristic $h^+(x_1) = 5$ vs. $h^*(x_1) = 15$

What to do about it?

- Handle costs and effects in combination!
- How?
 - X in tabular form? Exponential blow-up.
 - ✓ as decision diagram? Often compact.
 - → edge-valued multi-valued decision diagrams (EVMDDs) [Ciardo and Siminiceanu 2002; Lai, Pedram, and Vrudhula 1996]

Combined Representation using EVMDDs

Combined EVMDD for costs and effects

Consequence: effect x' := 4 now associated with cost 3.

February 4, 2018 Mattmüller, Geißer, Wright, Nebel – State-Dependent Action Costs and Conditional Effects

How to construct those EVMDDs?

Possible approach:

Repeated application of apply procedure [Ciardo and Siminiceanu 2002; Lai, Pedram, and Vrudhula 1996]

Prerequisite:

Generalize *apply* procedure beyond numbers.

Recursive construction:

Build ASTs of normalized cost and effects, and their combination.

5/18

Recursively run *apply* procedure on this AST.

Example: cost x + 2y + 1 combined with effect $((x \lor y) \rhd \neg z') \land ...$

6/18

Example: cost x + 2y + 1 combined with effect $((x \lor y) \rhd \neg z') \land ...$

Example: cost x + 2y + 1 combined with effect $((x \lor y) \rhd \neg z') \land \dots$

Example: cost x + 2y + 1 combined with effect $((x \lor y) \rhd \neg z') \land \dots$

Example: cost

February 4, 2018 Mattmüller, Geißer, Wright, Nebel – State-Dependent Action Costs and Conditional Effects

Example: cost x + 2y + 1 combined with effect $((x \lor y) \rhd \neg z') \land \dots$

9/18

Example: effects

February 4, 2018 Mattmüller, Geißer, Wright, Nebel – State-Dependent Action Costs and Conditional Effects

Example: cost x + 2y + 1 combined with effect $((x \lor y) \rhd \neg z') \land \dots$

11/18

Example: cost and effect combined

12/18

UNI FREIBURG

Proposition

If EVMDD \mathcal{E}_i represents function f_i (i = 1, 2), then EVMDD $apply(\circ, \mathcal{E}_1, \mathcal{E}_2)$ represents $f(s) = f_1(s) \circ f_2(s)$.

$$\mathsf{E}.\,\mathsf{g}.,\,\circ=+,-,\vee,\wedge,\rhd,\mathit{make_pair},\ldots$$

Properties of the Construction

Corollary

Combined cost-effect EVMDD represents function f with

f(s) = (cost in s, active effects in s).

Properties of the Construction

- Efficient computation of relaxed semantics
- Heuristics based on that: $h^+(x_1) = 15!$
- Compiling away state-dependent costs and effects

Empirical Results

Preliminary. Cost-based navigation domain.

Heuristic values: costs and effects combined vs. separately

Representation size of combination: (small instances, on avg)

- EVMDD-based: 58 nodes
- tabular: 1381 entries

- Informative heuristics wanted
 - \rightsquigarrow combined treatment of state-dependent costs and effects
- Representation: cost and effect EVMDDs
- Construction: repeated apply