
Compiling Away Soft Trajectory Constraints in Planning

Benedict Wright and Robert Mattmüller and Bernhard Nebel
University of Freiburg

{bwright, mattmuel,nebel}@informatik.uni-freiburg.de

Abstract

Soft goals in planning describe optional goals that should be
achieved in the goal state. However, failing to achieve soft
goals does not result in the plan becoming invalid. State tra-
jectory constraints describe requirements towards the way the
target goal is achieved, thus describing requirements towards
the state trajectory of the final plan. Soft trajectory constraints
express preferences on how the hard goals are reached, thus
stating optional requirements towards the state trajectory of
the plan. Such a soft trajectory constraint may require that
some fact should be always true, or should be true at some
point during the plan. The quality of a plan is then mea-
sured by a metric which adds the sum of all action costs and
a penalty for each failed soft trajectory constraint. Keyder
and Geffner showed that soft goals can be compiled away.
We generalize this approach and illustrate a method of com-
piling soft trajectory constraints into conditional effects and
state dependent action costs using LTLf and Büchi automata.
With this we are able to handle such soft trajectory constraints
without the need of altering the search algorithm or heuristics,
using classical planners.

Introduction
Soft goals in planning are additional requirements towards
the resulting plan. These requirements differ from classical
(hard) goals in that violating them does not render a plan in-
valid. PDDL 3.0 (Gerevini and Long 2005) introduced state
trajectory constraints, which add constraints towards how
goals are achieved. These come in two flavors, as hard con-
straints and as soft constraints. For the rest of the paper, we
will refer to optional state trajectory constraints as soft tra-
jectory constraints. We use the term “soft goals” to mean
reachability soft goals and soft trajectory constraints alike.
This is justified since reachability soft goals ϕ can be seen
as a special case of soft trajectory constraints of the form
(at end ϕ).

For checking satisfaction of reachability soft goals, it is
sufficient to test if they hold in the final state. However, for
soft trajectory constraints, a more sophisticated method of
checking their satisfaction is required. For example, if a soft
trajectory constraint requires a fact to be always true, it is
not sufficient to check if the fact is true in the final state, but
it needs to be tracked to check if the fact holds at any given
step of the plan.

The introduction of soft goals changes the overall quality
of a plan such that a cheapest plan achieving the hard goals
is not necessarily an optimal plan, as it does not take into ac-
count the achieving or failing of soft goals. For this, a metric
consisting of plan cost and a penalty for violated soft goals
is introduced. Thus, an optimal plan would incorporate all
soft goals while minimizing the total cost of the plan. This
corresponds to a constraint optimization problem, where the
constraints are the hard goals and the optimization tries to
fulfill the soft goals.

One issue that arises when dealing with soft goals is the
trade-off between minimizing cumulative action costs along
the way to a state satisfying the hard goals, and maximizing
rewards for achieved soft goals. An additional challenge is
how to inform the search about which paths appear promis-
ing towards optimizing this trade-off. In this paper, we show
how soft trajectory constraints can be compiled away using
LTLf, Büchi automata, conditional effects, and state depen-
dent action costs, generalizing the soft goal compilation in-
troduced by Keyder and Geffner (2009). This allows us to
use off-the-shelf classical planning heuristics to provide the
required guidance.

Related work
Baier and McIlraith (2008) give an overview over planning
with preferences, where they use the term preference to state
a preference of one plan over another, introducing differ-
ent preference formalisms based on quantitative, and qual-
itative languages. Using quantitative languages, the quality
of a given plan can be determined by a numeric value, such
as the overall reward in Markov Decision Processes (MDP).
In these MDPs the reward of an action can be used to spec-
ify preferences over actions. Alternatively, the quality of a
plan can be determined over a set of properties, such as
satisfied preferences. Such a system was implemented in
PDDL3 (Gerevini and Long 2005) where preferences can
be specified as temporal, or temporally extended predicates,
using a subset of LTL.

Baier et al. (2009) describe a method of compiling prob-
lems with temporally extended preferences into simpler ver-
sions consisting only of preferences that hold in the final
state, and can be evaluated using an objective function. The
authors achieve this by translating the LTL expressed prefer-
ences into parameterized non-deterministic finite state au-

tomata (PNFA). They then track the state of each object
within the automaton using a predicate for each automaton,
which tracks the state of each object within the automaton.
Here objects can reside in more than one state of the automa-
ton at each time step. Additionally they introduce a predicate
that holds if the automaton is in an accepting state for any
given object. Instead of tracking the state of the automaton
by extending the existing operators, they modify their search
algorithm to automatically apply the automata’s state transi-
tions for each object. The quality of their approach can then
be measured using an updated objective function.

Keyder and Geffner (2009) show that soft goals can be
compiled away by introducing a new hard goal p, which can
be achieved in two ways: A collect(p) action which has zero
cost but requires the soft goal to be achieved, and a forgo(p)
action that has costs equal to the utility of p but can be exe-
cuted when the soft goal was not achieved. These actions can
only be executed after the original plan goal was reached.
However their approach does not take trajectory constraints
into account, focusing on reachability soft goals only. We
build upon this work to generalize their approach towards
soft trajectory constraints.

Preliminaries

Linear-time temporal logic on finite traces

Linear-Time Temporal Logic (LTL) is a modal logic capable
of expressing logic expressions referring to time. As we will
see later in this section, LTL can be used to express trajectory
constraints. Let V be a set of finite-domain state variables
with associated finite domains Dv . We call pairs (v, d) with
v ∈ V and d ∈ Dv facts, and we denote the set of all facts
by F . Then an LTL formula ϕ over V is either an atomic fact
(v, d) over V , or of the form ¬ϕ, ϕ ∨ ψ, ©ϕ (“next ϕ”),
or ϕUψ (“ϕ until ψ”), where ϕ,ψ are LTL formulas. Other
propositional connectives can be defined as abbreviations in
the usual way, such as conjunction (∧), implication (→), bi-
implication (↔), truth (>), and falsity (⊥). Similarly, ♦ϕ
(“finally ϕ”) can be defined as an abbreviation for>Uϕ, and
�ϕ (“globally ϕ”) as an abbreviation for ¬♦¬ϕ. We also in-
troduce weak until ϕWψ as an abbreviation for ϕUψ ∨�ϕ.
Then the semantics of LTLf (LTL on finite traces) is defined
as the interpretation over finite traces denoting a sequence of
instants of time. Let µ = (µ(0), µ(1), . . . , µ(n)) be such a
trace with µ(i) ⊆ F for all i = 0, . . . , n. Then the truth of a
formula ϕ along trace µ is defined as follows (De Giacomo
and Vardi 2013):

µ, i |= a iff a ∈ µ(i) for a ∈ V
µ, i |= ¬ϕ iff µ, i 6|= ϕ

µ, i |= ϕ1 ∧ ϕ2 iff µ, i |= ϕ1 and µ, i |= ϕ2

µ, i |=©ϕ iff i < n and µ, i+ 1 |= ϕ

µ, i |= ϕ1Uϕ2 iff ∃j, i ≤ j ≤ n : µ, j |= ϕ2 and
∀k, i ≤ k ≤ j : µ, k |= ϕ1

µ |= ϕ iff µ, 0 |= ϕ

Trajectory constraints as LTL
PDDL 3.0 (Gerevini and Long 2005) introduced state-
trajectory constraints, which are modal logic expressions
that ought to be true for the state trajectory produced dur-
ing the execution of the plan. As shown by De Giacomo et
al. (2014), these can be expressed using LTL:

(at end ϕ) := ♦(last ∧ ϕ)

(always ϕ) := �ϕ

(sometime ϕ) := ♦ϕ

(within n ϕ) :=
∨

0≤i≤n

© . . .©︸ ︷︷ ︸
i

ϕ

(hold-after n ϕ) :=© . . .©︸ ︷︷ ︸
n

♦ϕ

(hold-during n1 n2 ϕ) :=© . . .©︸ ︷︷ ︸
n1

(
∧

0≤i≤n2

© . . .©︸ ︷︷ ︸
i

ϕ)

(at-most-once ϕ) := �(ϕ→ ϕW¬ϕ)

(sometime-after ϕ ψ) := �(ϕ→ ♦ψ)

(sometime-before ϕ ψ) := (¬ϕ ∧ ¬ψ)W(¬ϕ ∧ ψ)

(sometime-within n ϕ ψ) := �(ϕ→
∨

0≤i≤n

© . . .©︸ ︷︷ ︸
i

ψ)

Here, ϕ and ψ are propositional formulas on fluents, and
n, n1, n2 natural numbers. The predicate last is introduced
during the translation from LTLf to LTL, and is true if an
only if ¬©> which is the case in the last state of the state
trajectory. As the plan resulting from our planning task is
always finite, we need this restriction on LTL.

Planning tasks
Since we want to compile away soft trajectory constraints
using conditional effects and state-dependent action costs,
we base our exposition on a formalization of planning tasks
that admits all of those features. This leads us to the follow-
ing definition:

A planning task is a tuple Π = 〈V, A, s0, s?,Φ〉 consist-
ing of the following components: V = {v1, . . . , vn} is a
finite set of state variables, each with an associated finite
domainDv . A fact is a pair (v, d), where v ∈ V and d ∈ Dv ,
and a partial variable assignment s over V is a consistent
set of facts. If s assigns a value to each v ∈ V , s is called a
state. Let S denote the set of states of Π.A is a set of actions,
and each action is a pair a = 〈pre, eff〉, where pre is a par-
tial variable assignment called the precondition, and where
eff is an effect of the form eff =

∧
i=1,...,n(prei B effi) for

some number n ∈ N of conditional effects, each consisting
of an effect condition prei, again a partial variable assign-
ment, and an effect effi, also a partial variable assignment.
The state s0 ∈ S is called the initial state, and the partial
state s? specifies the goal condition. Each action a ∈ A
has an associated cost function ca : S → N that assigns
the cost of a to each state where a is applicable. Finally, Φ
is a finite set of LTLf formulas over V , the soft trajectory
constraints. Each soft trajectory constraint ϕ ∈ Φ has an as-
sociated weight wϕ ∈ N specifying which importance we

assign to satisfying ϕ. For states s, we use function notation
s(v) = d and set notation (v, d) ∈ s interchangeably. For
facts we also use sets and conjunctive logical expressions
interchangeably, where a set of facts is treated equivalently
to a conjunction of these facts.

The change set [eff]s of effect eff =
∧
i=1,...,n(preiB effi)

in state s is the set of facts that eff makes true if applied in
s, i. e., the set

⋃
i=1,...,n[prei B effi]s, where [prei B effi]s

is either ∅, if s 6|= prei, or effi, if s |= prei. Then an action
a = 〈pre, eff〉 is applicable in state s iff pre ⊆ s and the
change set [eff]s is consistent. Applying action a to s yields
the state s′ with s′(v) = [eff]s(v) where [eff]s(v) is defined,
and s′(v) = s(v) otherwise. We write s[a] for s′. A state s
is a goal state iff s? ⊆ s. We denote the set of goal states by
S?. Let π = (a0, . . . , an−1) be a sequence of actions from
A. We call π applicable in s0 if there exist states s1, . . . , sn
such that ai is applicable in si and si+1 = si[ai] for all
i = 0, . . . , n− 1. In that case, we call µπ = (s0, s1, . . . , sn)
the state trajectory induced by π in s0. We call π a plan
for Π if it is applicable in s0 and if sn ∈ S?. The action
cost of plan π is the sum of action costs along the induced
state sequence, i.e., cost(π) =

∑n−1
i=0 cai(si). A plan π

is penalized with penalty wϕ for each soft trajectory con-
straint ϕ ∈ Φ that is violated on its induced trajectory. For-
mally, the value penalty(π, ϕ) for π with respect to ϕ is 0,
if µπ |= ϕ, and wϕ, if µπ 6|= ϕ. The overall penalty for π is
penalty(π) =

∑
ϕ∈Φ penalty(π, ϕ).

The total cost of plan π is its action costs plus its overall
penalty, i. e., totalcost(π) = cost(π) + penalty(π). A plan
is optimal for Π if it minimizes totalcost among all plans
for Π.

Automata semantics of planning tasks
A deterministic finite automaton (DFA) is a tuple A =
〈Σ, Q,∆, q0, Qa〉 consisting of an alphabet Σ, a set of states
Q, a transition function ∆ : Q × Σ → Q, an initial state
q0 ∈ Q, and a set of accepting states Qa ⊆ Q. The transi-
tion system of any planning task Π = 〈V, A, s0, s?,Φ〉 can
be understood as a DFAA(Π) as follows: the input alphabet
is Σ = A× 2F . The set of states, the initial state, and the set
of accepting/goal states ofA(Π) are those of Π, i. e.,Q = S,
q0 = s0, and Qa = S?. Finally, ∆ consists of all transitions
of the form 〈s, (a, t), t〉 where a ∈ A is applicable in s and
s[a] = t. What was lost in the translation from Π to A(Π)
are the action costs and the soft trajectory constraints. Costs
are trivial to handle by adding weights to the automaton, and
we will come back to that later. To give an automata-based
semantics to state-trajectory constraints, we need to review
the theory of Büchi automata first.

Büchi automata
A deterministic Büchi automaton (Büchi 1962) B =
(Σ, Q,∆, q0, Qa) consists of the same components as a
DFA, and differs from a DFA only in the acceptance con-
dition. Whereas a DFA A accepts a finite input word µ
if after reading µ, A is in an accepting state, a Büchi au-
tomaton B accepts an infinite word µ if, while reading µ,
B visits an accepting state infinitely often. For every LTL

formula ϕ, there is a deterministic Büchi automaton B(ϕ)
that accepts exactly those infinite words µ with µ |= ϕ. In
the case of finite traces (finite words) required by LTLf, the
same automaton accepts the word if at the end of the word
the automaton is in an accepting state (Giannakopoulou
and Havelund 2001). There are multiple algorithms for
constructing a Büchi automaton that accepts exactly those
words that satisfy a given LTL formula (Gerth et al. 1996;
Gastin and Oddoux 2001). Constructing an automaton from
a given LTLf formula ϕ can be achieved by first translating ϕ
into a LTL formula as described in De Giacomo et al. (2014)
and then applying a given construction algorithm. Simply
put, this translation adds a new predicate last which is only
true in the last instance of the interpretation sequence, and
therefore ensuring finite traces.

Now, for a planning task Π with a hard state-trajectory
constraint ϕ, the standard automaton construction consid-
ers the product automaton C of A(Π) and B(ϕ). Then, a
state trajectory µ is a solution to Π satisfying ϕ iff µ is ac-
cepted by C. For soft state-trajectory constraints, we can still
perform the same product automaton construction to track
which soft constraints are satisfied by a plan. Unlike with
hard constraints, however, the product automaton still has to
accept trajectories that violate soft constraints, and the vi-
olation has to be reflected in the plan costs, rather than in
the acceptance condition of the product automaton. The next
section describes the product construction, an assignment of
action costs that reflects the satisfaction or violation of soft
trajectory constraints, and a compact encoding of the prod-
uct automaton as a new planning task Π′.

Goal action penalty compilation
Let Π = 〈V, A, s0, s?,Φ〉 be the original planning task
with soft trajectory constraints Φ and with objective func-
tion totalcost as defined above. Transition costs aside, the
semantics of Π are captured by the product automaton
C = A(Π) ×

∏
ϕ∈Φ B(ϕ). However, when compiling away

soft trajectory constraints, we do not want to generate an
automaton, but rather another planning task Π′ such that
A(Π′) is isomorphic to C. We now describe this construc-
tion. For simplicity of exposition, we assume that Φ consists
of a single constraint ϕ only. Generalization to more than
one soft trajectory constraint is straightforward.

The idea behind the construction of Π′ is to add a new
tracking variable τϕ to Π that keeps track of the current state
ofB(ϕ). The actions in Π′ are those from Π, augmented with
conditional effects that take care of the correct evolution of
the value of τϕ, thus encoding the soft trajectory constraints
into the actions. Action costs stay the same. Finally, a ter-
minal action last op is added to Π′ that marks termination.
Only after termination has been marked, we may start eval-
uating the penalty term for unsatisfied soft goals.

Formally, let B(ϕ) = (Q,Σ,∆, q0, Qa) be the determin-
istic Büchi automaton that accepts ϕ. Then we create plan-
ning task Π′ = 〈V ′, A′, s′0, s′?, ∅〉 with V ′ = V ∪ {last} ∪
{τϕ}, with a propositional domain for last and domain Q
for τϕ. The initial state s′0 agrees with s0 on all variables in
V , and additionally, s′0(last) = ⊥ and s′0(τϕ) = q0.

The actions are A′ = {o′ | o ∈ A} ∪ {last op} where
o′ = 〈pre′, eff′〉 is constructed from o = 〈pre, eff〉 as follows:
pre′ = pre and

eff′ = eff ∧
∧

〈q,s,q′〉∈∆ with
last /∈s

((τϕ = q ∧ P)B τϕ := q′),

where P = q′ \ eff. In words, we add conditional effects to
track the value of τϕ for each transition in B(ϕ). The facts
in s are either already true in q as ensured by the effect con-
ditions P or are set to true by the original actions effect eff.
As an exception, if s contains the keyword last , which can
only be true in the last step of the plan, we add the new ac-
tion last op = 〈s?, last := >〉 instead. To ensure that this
action has to be executed as the last step of any plan for Π′,
we replace the original goal condition s? by the new goal
condition s′? = last . As action costs, we have co′ = co for
all o ∈ A, and clast op = 0. Additional formal machinery
needed for the evaluation of the penalty term is deferred un-
til after the following proposition.
Proposition 1. Up to transitions with action last op, the
transition system A(Π′) is isomorphic to the product of the
transition system A(Π) and trajectory constraints LTLf au-
tomaton B(ϕ).

Proof. For this proof we slightly alter B(ϕ) such that each
transition not only consists of a partial variable assignment,
but a tuple of a state and an action. We replace each transi-
tion 〈q, s, q′〉 inB(ϕ) by a set of new transitions 〈q, (o, t), q′〉
for all (t, o) ∈ S × A such that s ⊆ t, where o is an action
that after applying to q results in q′. Doing this creates an
automaton with the same signature as A. From this altered
Büchi automaton we can now easily constructA(Π)×B(ϕ),
by simply creating the Cartesian product of the two automata
(Baier and Katoen 2008). A transition 〈s′q, (o′, t′q′), t′q′〉 is
contained in A(Π′) if and only if o is applicable in s ∈ Π

and t = apply(o, s) and (τϕ, q) ∈ s′q and (τϕ, q
′) ∈ t′q

′
.

Then 〈s, (o, t), t〉 ∈ A(Π) and 〈q, (o, t), q′〉 ∈ B(ϕ) if and
only if 〈(s, q), (o, t), (t, q′)〉 ∈ A(Π)×B(ϕ), thus A(Π′) is
isomorphic to A(Π)× B(ϕ).

Now that we can track the state of each soft trajectory con-
straint within the planning task Π′, we need to add penalties
for all constraints not achieved in the reached terminal state.
For this we add another propositional variable in goal to
Π′ that is initially false, and change the goal s′? from last
to in goal . This means that every plan for Π′ has to in-
clude an occurrence of the new action penalize = 〈last ∧
¬in goal , in goal〉 as its last step. The cost function of the
action penalize now simply determines the penalty value
penalty(π) based on which soft trajectory constraints ϕ ∈ Φ
are violated by testing whether the corresponding tracking
variables τϕ encode accepting or non-accepting Büchi au-
tomata states in the current planning state. More formally,
cpenalize =

∑
ϕ∈Φ[τϕ /∈ Qϕa]wϕ where [τϕ /∈ Qϕa] = 1 if

τϕ = q and q 6∈ Qϕa for some q ∈ Qϕ, and 0 otherwise.
Notice that the action penalize has state-dependent costs

that are not universally supported by planning systems.
However, those can be compiled away to state-independent

0 1

¬dirty

dirty

Figure 1: Büchi automaton for �¬dirty

costs, if this is desired (Geißer et al. 2015). Notice further
that determining the value [τϕ /∈ Qϕa] is also simple. It can
either be rewritten as

∑
q∈Qϕ\Qϕ

a
[τϕ = q], where [τϕ = q]

is 1 if s(τϕ) = q, and 0 otherwise; alternatively, another
new propositional variable is violatedϕ can be added to the
planning task that is true iff the value of τϕ represents a non-
accepting state. Then cpenalize =

∑
ϕ∈Φ[is violatedϕ]wϕ.

A natural modeling would treat is violatedϕ as a derived
variable, and would have axioms that express is violatedϕ
in terms of τϕ. We mention this latter possibility since it
makes the relation between our proposed compilation and
that of Keyder and Geffner (2009) obvious (cf. Remark 1
below).

In any case, it is clear that adding this action preserves the
original objective function.
Proposition 2. Let Π′ be the compiled task from Π. Then an
optimal plan for Π′ is also an optimal plan for Π (without
the penalize action).

Proof. From Proposition 1 we get that the compilation is
sound and complete. The objective function of the original
task is penalty(π) + cost(π). Up until the penalize action,
the objective function sums up all action costs, as the cost
functions for each action are not altered by the compilation.
The penalize action then adds a penalty for each soft trajec-
tory constraint that is not satisfied, resulting in an objective
function identical to the original objective function.

Example 1. Let a1 = 〈>, dirty〉 be an action and ϕ the
preference �¬dirty . We can then track the state in the au-
tomaton in Figure 1 by adding the conditional effect (τϕ =
0 B τϕ := 1) to action a1, as can be derived from Fig-
ure 2. Let a2 be another action that does not have dirty
among its effects. Then we need to add the conditional effect
(τϕ = 0 ∧ dirty B τϕ := 1) to a2 that transitions from state
0 to state 1 if dirty is true regardless of the effect of a2.1 The
partial cost function c for this preference is c = [τϕ = 1]wϕ
and is added to the cost of the penalize action. This addswϕ
to the total plan cost if B(ϕ) is in the non-accepting state 1.

An analysis of the penalize action shows that after apply-
ing the EVMDD compilation (Geißer et al. 2015), the result-
ing operations correspond to the operations collect , forgo,

1It is an invariant of this planning task that, whenever dirty is
true, τϕ is 1. Therefore, the effect condition τϕ = 0 ∧ dirty can
never be satisfied. However, detecting this, and then removing con-
ditional effects whose condition is inconsistent with an invariant,
and thus simplifying the constructed conditional effects, is beyond
the scope of this work.

τϕ :=



1 : τϕ = 0 ∧ (dirty ∈ [eff]s ∨
(s |= dirty ∧ ¬dirty /∈ [eff]s))

1 : τϕ = 1

0 : τϕ = 0 ∧ (¬dirty ∈ [eff]s ∨
(s |= ¬dirty ∧ dirty /∈ [eff]s))

Figure 2: Derivation of conditional effects for τϕ from Fig-
ure 1, where s is the current state of the search

is violatedϕ1

. . .

is violatedϕn

0

0

0

wϕ1

1

0

0

wϕn−1

1

0

0

wϕn

1

end

collect ϕ1 forgo ϕ1

collect ϕn−1 forgo ϕn−1

collect ϕn forgo ϕn

Figure 3: EVMDD compilation of penalize action with de-
rived variables is violatedϕi , which are true if τϕi is in a
non-accepting state. Numbers on edges are partial costs (=
costs of compiled actions).

and end described in the compilation by Keyder and Geffner
(2009). This immediately implies that our approach general-
izes the soft trajectory constraint compilation by Keyder and
Geffner (2009) to support trajectory constraints.

Remark 1. We’ve seen that we can express the cost of the
penalize action as cpenalize =

∑
ϕ∈Φ[is violatedϕ]wϕ. Ex-

pressed as an edge-valued multi-valued decision diagram
(EVMDD) (Geißer et al. 2015), cpenalize looks as depicted in
Figure 3 (without the red annotations). The EVMDD-based
action compilation of Geißer et al. (2015) now turns each
edge of the EVMDD into a new auxiliary action. These new
actions are exactly the end , collect , and forgo actions from
Keyder and Geffner (2009) (indicated as the red annota-
tions).

One limitation of this approach is that the achievement of
any soft trajectory constraint is only represented by the h-
value (up until the penalize action). A more desirable com-
pilation would provide the search with a more accurate g-
value, thus informing the search when a soft trajectory con-
straint is achieved. In the following section we will demon-
strate a possible solution to this problem.

General action penalty compilation
In this section we will show how the above approach can be
extended to provide the search with a more accurate g-value.
The main reason for the uninformedness in relation to the g-
value is the fact that any penalty is only applied in the very
last step of the search in the penalize action. However, while
tracking the soft trajectory constraint’s automaton B(ϕ), we
already have information about the current acceptance status
of each soft trajectory constraint. We will now show how this
information can be used to add penalties and rewards to the
individual actions changing the state of B(ϕ).

Whenever an action a changes the value of τϕ, thus transi-
tioning from one state q to another state q′ in B(ϕ), we add
a penalty or a reward depending on the type of transition.
When q is an accepting state and q′ a non-accepting state in
B(ϕ), we add a penalty to the action cost. If, on the other
hand, q′ is an accepting state and q is a non-accepting state,
we can add a reward. The partial cost function for transi-
tions in B(ϕ) then takes the form

∑
q∈Qϕ [τϕ = q]ωϕ(q, q′),

where ωϕ(q, q′) is a penalty or reward term and is added to
the cost function c of a. For transitions from accepting to
non-accepting states, we set ωϕ(q, q′) to a positive penalty
term and for transitions from non-accepting to accepting
states, we set ωϕ(q, q′) to a reward in the form of a negative
value. Similarly, the partial cost functions for each type of
transition can be formulated, setting ωϕ(q, q′) accordingly.
For the actual value of ωϕ(q, q′), we use the value from the
original soft trajectory’s weight wϕ. The total cost function
of each action is then the sum of the partial cost functions
plus the original action cost.

This way, we penalize actions resulting in a transition
from accepting to non-accepting states by giving them
higher costs, and reward actions that result in an accepting
state ofB(ϕ) by applying negative costs. Note, that ωϕ(q, q′)
only accounts once in the total cost, as we can never add
ωϕ(q, q′) without subtracting it beforehand.

By construction, minimizing totalcost in the compiled
task Π′ amounts to the same as minimizing the totalcost of
the original task Π. One minor detail to take in to account is
if the initial state ofB(ϕ) is in a non-accepting state, we need
to add a penalty to account for this. We do this by adding an
additional penalty to the penalize action.

The problem now is that we have introduced negative ac-
tion costs. As we can ensure that we do not have any nega-
tive cycles in our search, resulting in a total plan cost ≥ 0,
we can use planners that support negative action costs. Note
that having such negative-cost cycles would result in arbi-
trarily low totalcost , and the non-termination of the search,
as each node in the cycle can be reached by a yet cheaper
path. Currently, Fast Downward (Helmert 2006) with blind
heuristic supports negative action costs. However, for more
sophisticated heuristics, or planners not supporting negative
action costs, negative action costs need to be removed.

To remove negative action costs, we introduce a state tran-
sition cost (Table 1), where we specify the penalty/reward
for each possible transition type. This transition cost table
gives us greater control over the implications a state transi-
tion in B(ϕ) has towards fulfilling the soft trajectory con-

Table 1: State Transition Costs

(a) Metric Preserving Costs

From
To Accepting ¬ Accepting

Accepting 0 wϕ
¬ Accepting −wϕ 0

(b) Positively Shifted Costs

From
To Accepting ¬ Accepting

Accepting wϕ 2wϕ
¬ Accepting 0 wϕ

(c) Adapted Positively Shifted Costs

From
To Accepting ¬ Accepting

Accepting 0 2wϕ
¬ Accepting 0 wϕ

straint. For instance, by setting the penalty/reward ωϕ(q, q′)
of a transition from an accepting state to another (or the
same) accepting state to ωϕ(q, q′) = 0 and all other tran-
sitions to ωϕ(q, q′) > 0, we can model the preference of
staying in an accepting state over all other possibilities. Ad-
ditionally, we can set the cost for leaving an accepting and
entering a non-accepting state higher as to penalize these ac-
tions.

The transition cost table (Table 1a) corresponds to the
cost function described above. Table 1b shows the cost func-
tion where the costs have been shifted by wϕ to remove
negative costs. As one can see this has the negative effect
of penalizing state transitions from accepting to accepting
states. Therefore, we introduce transition Table 1c, where
transitions from accepting to accepting sates are also not
penalized. Transitions leaving an accepting state, however,
are highly penalized, whereas remaining in a non-accepting
state is only penalized by a lower cost.

This cost function is informative regarding h and g values,
regardless of the actually used cost table, however the total
cost of the compiled task is greater than the original plans to-
tal cost totalcost(π′) ≥ totalcost(π), where π, π′ are plans
from Π and Π′ respectively. This is due to the fact that penal-
ties from staying in a non-accepting state are added multiple
times.

Experiments
We implemented our compilation into a recent version of
the Fast Downward planning system supporting state depen-
dent action costs. The evaluation was executed on a a subset
of the fifth International Planning Competition (IPC-5) plus
the Rovers domain from the IPC-3. We will now first dis-
cuss the results for the goal action penalty compilation, fol-
lowed by the general action penalty compilation, finalizing
with a discussion and comparison of the two approaches.
In the domain names, SP and QP stand for Simple Prefer-

ences and Qualitative Preferences, respectively. The differ-
ence in these being that simple preferences use goal state
preferences of the form (at end ϕ) only, and qualitative pref-
erences use more complex state trajectory constraints. As
the competition was for satisficing planning only, and many
instances were too hard for optimal planning, which we are
interested in, we generated additional simpler instances by
randomly sampling subsets of the soft trajectory constraints.
From each instance, we generated six new instances with
1%, 5%, 10%, 20%, 40%, and 100% of the soft trajectory
constraints. We did not alter the hard goals of the original
instances, which led to the exclusion of the openstacks do-
main, as finding optimal solutions for more than the very
simple instances proved to be too hard.

Goal action penalty compilation results
For the goal action penalty compilation, we used hblind, hmax,
and hM&S for the optimal track. For the satisficing bench-
mark, we used hadd and hFF with iterative eager greedy
search with three iterations. No significant differences where
found between the two heuristics in the satisficing bench-
mark, with a slightly better performance by hFF. In the re-
maining evaluation, we therefore only consider hFF.

As can be seen in Table 2, the performances varied over
the domains. This is a consequence of finding an optimal
solution to the hard goals even without considering the soft
trajectory constraints. The trucks domain did not execute on
the merge and shrink heuristic, as this heuristic does not sup-
port axioms, which are introduced by the translate step in the
Fast Downward planner.

As can be seen in Figure 4, the satisficing benchmark per-
formed rather well on the Rovers, Storage, and Trucks SP
domain, as their penalty is always close to zero. The quality
of the Trucks QP domain is slightly worse as fulfilling all
soft trajectory constraints becomes more difficult, the more
complex the instance is. For the pathways domain, we in-
creased the penalty for not achieving soft goals by a factor
of 10, as otherwise the optimal plan would be to ignore the
soft trajectory constraints. As this domain has no hard goals,
but soft trajectory constraints only, this would have resulted
in an empty plan. As can be seen in some cases this was not
sufficient and the resulting penalty is equal to the total cost,
indicating that no soft trajectory constraints where satisfied.
The storage domain also has no hard goals, but the penal-
ties where already high in comparison to the action costs,
requiring no alteration of the penalties.

General action penalty compilation results
Here we compare the results using the different configura-
tions from Table 1. The experimental setup is identical to
the above with the slight exception to configuration from
Table 1a where only hblind was used, as it requires negative
action costs. As can be seen in Table 3a, the increased in-
formedness of the general action compilation together with
the metric preserving cost function did not significantly in-
crease the amount of optimally solved instances. This is a
result of the relative uninformedness of the blind heuristic,
and the fact that the cost function needs to be evaluated for

Domain hblind hmax hM&S

pathways SP 12.22% 18.33% 12.22%
rovers QP 18.33% 14.17% 16.67%
storage SP 33.33% 39.17% 32.50%
storage QP 25.49% 32.35% 24.51%
trucks SP 23.53% 15.29% na
trucks QP 19.83% 14.66% na

Table 2: Coverage of goal action penalty compilation of
the IPC-5 benchmark set with additional instances with ran-
domly sampled soft trajectory constraints, A* search for op-
timal solution.

Instance
0

50

100
Cost
Penalty

(a) Pathways SP

Instance
0

20

40

60 Cost
Penalty

(b) Rovers QP

Instance
0

20

40
Cost
Penalty

(c) Storage SP

Instance
0

20

40

60
Cost
Penalty

(d) Storage QP

Instance
0

25

50

75

100 Cost
Penalty

(e) Trucks SP

Instance
0

50

100

150 Cost
Penalty

(f) Trucks QP

Figure 4: Plan quality of the satisficing benchmarks, ordered
by total cost using goal action penalty compilation and hFF

heuristic

each action. As we currently use a relative unoptimized in-
ternal representation of the cost function, this significantly
increases the search time, leading to timeouts before a solu-
tion could be found.

As can be seen in Tables 3b and 3c, the coverage increased
significantly on these two cost compilations. This, however,
is an artifact of the introduced error, as all actions become

more expensive to execute. This results in the penalty for
not achieving the soft trajectory constraints to become rel-
atively low compared to the action costs. Thus, the empty
plan becomes the optimal plan where no hard goals are spec-
ified, and the shortest plan becomes the optimal plan where
hard goals are specified. This could be improved by a scaling
function, which increases the penalty for not achieving the
soft trajectory constraints and/or decreases the action costs.

Domain hblind hmax hM&S

pathways SP 18.00% na na
rovers QP 12.00% na na
storage SP 12.00% na na
storage QP 8.16% na na
trucks SP 16.15% na na
trucks QP 26.45% na na

(a) Metric Preserving Costs

Domain hblind hmax hM&S

pathways SP 36.67% 77.22% 7.22%
rovers QP 19.17% 11.67% 8.33%
storage SP 78.33% 78.33% 8.33%
storage QP 77.45% 76.47% 4.90%
trucks SP 23.53% 12.97% na
trucks QP 20.54% 8.93% na

(b) Positively Shifted Costs

Domain hblind hmax hM&S

pathways SP 36.67% 77.22% 7.78%
rovers QP 16.67% 15.00% 10.00%
storage SP 78.33% 78.33% 8.33%
storage QP 77.45% 77.45% 4.90%
trucks SP 23.53% 12.94% na
trucks QP 20.54% 12.50% na

(c) Adapted Positively Shifted Costs

Table 3: Coverage of general action penalty compilation
with the configurations from Table 1

Comparison to zero penalty compilation
Finally, we executed the same test set without a penalty
action cost on goal action penalty compilation with blind
heuristics for optimal solutions, and compared it to the above
results regarding the average fulfilled soft trajectory con-

Domain penalty no penalty
pathways SP 97.19% 46.10%
rovers QP 47.05% 20.20%
storage SP 99.50% 54.20%
storage QP 99.90% 48.40%
trucks SP 98.10% 75.20%
trucks QP 100.00% 100.00%

Table 4: Comparison of average fulfilled soft trajectory con-
straints with and without penalty cost, only regarding in-
stances for which a solution was found

straints, as shown in Table 4. Here, no penalty corresponds
to the accidental fulfillment of the soft trajectory constraint,
as the search is not guided towards them. As can be seen,
the percentage of fulfilled soft trajectory constraints is sig-
nificantly higher with cost guidance. The trucks domain does
not show significant difference. This is a result of the overall
hardness of finding an optimal solution as can be seen in Fig-
ure 2, as instances for which a solution was found were also
easy to optimize towards their soft goals, whereas harder in-
stances where not solved at all. Harder instances where not
solved and thus not accounted for in Table 4.

Conclusion
In this paper, we introduced a method of compiling soft tra-
jectory constraints into actions with conditional effects and
state dependent action costs. For this, we created Büchi au-
tomata for each grounded soft trajectory constraint and mod-
ified the original planning task to track the state of each
automaton during the state trajectory of the current partial
plan. We then used state-dependent action costs to inform
the heuristic guiding the search towards an optimal solu-
tion considering the soft trajectory constraints. We then con-
ducted experiments using the IPC-5 benchmark set with ad-
ditional generated instances. We showed that this approach
enables classical planners to search for optimal solutions,
taking soft trajectory constraints into account, without alter-
ing the search algorithm or implementing special heuristics.

Future work
One issue we found was that some soft trajectory constraints
are simply not reachable or contradict hard goals. There-
fore, these soft trajectory constraints can be removed from
the search completely, and the penalty can be added directly
in the penalize action. We expect this to improve the overall
performance of our approach, as the effort needed to track
the states and calculate the costs is reduced.

Additionally, the cost function and automata tracking can
be simplified by applying optimizations on the generation of
the Büchi automata.

In the action penalty compilation, we introduced negative
action costs. In our setting, using the Fast Downward planner
(Helmert 2006), we were only able to use the blind heuristic,
as it does not fail on negative action costs. An analysis of
alternative heuristics concerning negative action costs could
significantly improve the performance of our approach.

Going beyond what is already supported by PDDL 3, con-
ditional preference networks (CP-nets) can express relations
between preferences (Baier and McIlraith 2008). We would
like to extend this notion to express relations between soft
goals in planning such that we can state things like if A then
B, where A is a fact that can become true and B is a soft
goal. For example, we could express the soft goal if in Paris,
visit the Eiffel Tower, where being in Paris may be a hard or
a soft goal, or even just a intermediate location, and visiting
the Eiffel Tower is not a hard goal but a soft goal. This in-
creases a planner’s capability of creating more user centric
plans, by incorporating these preferences into a planning in-
stance.

Acknowledgments. This work was partly supported by
BrainLinks-BrainTools, Cluster of Excellence funded by the
German Research Foundation (DFG, grant number EXC
1086). We thank the the anonymous reviewers for their in-
sightful comments, helping in improving the overall quality
of the paper.

References
Christel Baier and Joost-Pieter Katoen. Principles of Model
Checking. The MIT Press, 2008.
Jorge A. Baier and Sheila A. McIlraith. Planning with pref-
erences. AI Magazine, 29(4):25–36, 2008.
Jorge A. Baier, Fahiem Bacchus, and Sheila A. McIlraith. A
heuristic search approach to planning with temporally ex-
tended preferences. Artificial Intelligence Journal (AIJ),
173(5–6):593–618, 2009.
J. Richard Büchi. On a decision method in restricted sec-
ond order arithmetic. In Proceedings of the International
Congress on Logic, Methodology, and Philosophy of Sci-
ence, pages 1–11, 1962.
Giuseppe De Giacomo and Moshe Y. Vardi. Linear temporal
logic and linear dynamic logic on finite traces. In Proceed-
ings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI 2013), pages 854–860, 2013.
Giuseppe De Giacomo, Riccardo De Masellis, and Marco
Montali. Reasoning on LTL on finite traces: Insensitivity to
infiniteness. In Proceedings of the 28th AAAI Conference on
Artificial Intelligence (AAAI 2014), pages 1027–1033, 2014.
Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata
translation. In Proceedings of the 13th International Con-
ference on Computer Aided Verification (CAV 2001), pages
53–65, 2001.
Florian Geißer, Thomas Keller, and Robert Mattmüller.
Delete relaxations for planning with state-dependent action
costs. In Proceedings of the 24th International Joint Con-
ference on Artificial Intelligence (IJCAI 2015), 2015.
Alfonso Gerevini and Derek Long. Plan constraints and
preferences in PDDL3: The language of the 5th international
planning competition. Technical report, Department of Elec-
tronics for Automation, University of Brescia, Italy, 2005.
Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper.
Simple on-the-fly automatic verification of linear temporal
logic. In Proceedings of the 15th International Symposium
on Protocol Specification, Testing and Verification, pages 3–
18, 1996.
Dimitra Giannakopoulou and Klaus Havelund. Automata-
based verification of temporal properties on running pro-
grams. In Proceedings of the 16th Annual Interna-
tional Conference on Automated Software Engineering (ASE
2001), pages 412–416, 2001.
Malte Helmert. The Fast Downward planning system. Jour-
nal of Artificial Intelligence Research (JAIR), 26:191–246,
2006.
Emil Keyder and Hector Geffner. Softgoals can be compiled
away. Journal of Artificial Intelligence Research (JAIR),
pages 547–556, 2009.

